Jumping Jack Flash weblog

Batterie al litio a stato solido

Posted in auto elettriche, batterie by jumpjack on 27 agosto 2018

Ultimamente si sente parecchio parlare di batterie al litio a stato solido, e di svariati milioni di dollari investiti da varie aziende sulla loro ricerca e sviluppo; queste batterie occuperebbero infatti metà spazio (e metà peso) di quelle attuali, scatenando quindi una vera rivoluzione nella mobilità elettrica, quanto lo ha fatto l’introduzione delle Li-NCM da 250 Wh/kg al posto delle LiFePO4 da 100 Wh/kg.

Ecco un interessante grafico riassuntivo delle capacità gravimetriche e volumetriche di varie tecnologie  attualmente esistenti (a livello di cella; dentro una batteria le densità diminuiscono per la presenza di separatori, condizionatori, elettronica,…):

Fonte: https://www.researchgate.net/publication/320425585

Ecco una ricerca recentissima (2018) che descrive molto tecnicamente come sono fatte e funzionano (o funzioneranno) le  batterie al litio a elettrolita solido (Solid State Electrolite – SSE, o Solid State Battery – SSB), di cui esistono molteplici varianti, ma per ora tutte soltanto a livello di laboratorio: A Brief Review of Current Lithium Ion Battery Technology and Potential Solid State Battery Technologies – Andrew Ulvestad

Le uniche fuori dal laboratorio sono installate sulle auto elettriche Bollorè, ma hanno la densità gravimetrica delle LiFePO4 (100 Wh/kg) e devono lavorare a 80 °C.

La ricerca non parla però della nuova tecnologia inventata dal prof. Goodenough, inventore delle batterie al litio 30 anni fa, che ora (nel 2017), alla tenera età di 94 anni, le ha “perfezionate” inventando quelle a elettrolita solido vetroso.

In genere se una tecnologia per le batterie funziona, ci vuole una decina d’anni perchè arrivi sul mercato delle auto elettriche, forse qualcuno in meno perchè arrivi sui modellini telecomandati, più sacrificabili, e sui cellulari, perchè tanto la gente li comprerebbe anche se funzionassero a nitroglicerina…

Quindi non resta che aspettare, e intanto ringraziare questo simpatico vecchietto se la rivoluzione della mobilità elettrica è diventata possibile.

Prof. Goodenough

 

 

Diario elettrico Ecojumbo 5000 – 16 settembre 2016: batteria guasta

Posted in batterie, scooter elettrici by jumpjack on 24 settembre 2016

Una batteria mi ha improvvisamene piantato.

Il contakm segna 13900.

Nel viaggio di andata la batteria non ha dato nessun problema, ma a ritorno ho notato che il voltmetro scendeva parecchio in accelerazione, e una volta a casa ho verificato che staccando l’altra batteria lo scooter si spegneva.

La cosa strana, però, è che la batteria (da 60V) dà 65 volt! Però, se la collego allo scooter, questo non si accende; se la collego al caricabatteria, questo attacca e stacca continuamente a intervalli casuali, come se ci fosse un falso contatto.

Ho smontato e ispezionato la batteria, ma non vedo danni evidenti sul BMS; c’erano un paio di piazzole un po’ sporche di non so cosa, ma non sembrava un cortocircuito o un falso contatto, e anche dopo aver ripulito non è cambiato niente.

Ho quindi ordinato un po’ di materiale per la riparazione e, approfittando dell’occasione, per un upgrade:

BMS LiFePO4 60V

 

  • Connettori JST da 8, 10 e 12 pin:

 

  • JST XA da 12 pin per PCB:

 

  • JST  XA 12 pin per cavo:

Corpo connettore PCB JST serie XA, femmina, 12 vie, 1 fila, passo 2,5mm

 

  • Pin:

Contatto per connettore PCB JST femmina, a crimpare

 

  • JST EH 8 pin  per PCB:

Connettore circuito stampato JST 8 vie 1 file passo 2,5mm, 3A diritto serie EH

 

  • JST EH 8 pin per cavo:

Corpo connettore PCB JST serie EH, 8 vie, 1 fila, passo 2,5mm

 

  • JST EH 10 pin per PCB:

Connettore circuito stampato JST 10 vie 1 file passo 2,5mm, 3A diritto serie XH

 

  • JST XH 10 pin per PCB:

Connettore circuito stampato JST 10 vie 1 file passo 2,5mm, 3A diritto serie EH

 

 

Pin strip femmina da 20 pin:

Winslow 2.54mm 20 Way 1 Row Straight Through Hole Female PCB Socket Strip

Il progetto è questo:

Il BMS originale (marcato “PCM-L20S40-321 (B-1)” su un lato e “F-321-20S-60A-203” dall’altra) ha due connettori da 10 pin (oltre a un terzo da 8 pin che va a un circuito separato di gestione della potenza); quello nuovo ha un connettore da 12 e uno da 8 pin. Voglio costruire un adattatore che permetta di collegarli tra loro senza dover tagliare i fili del BMS originale (che potrei anche riuscire a riparare prima o poi…), e già che ci sono voglio aggiungergli un terzo adattatore, a cui collegare un CellLog8s.

ecoitalmotor-002 ecoitalmotor-003

 

La batteria: (Al centro, tra le due coppie di pacchi HC-13A8F5 , si vede l’insolito PCB lungo e stretto che gestisce la parte di potenza del BMS.)

ecoitalmotor-001

 

L’adattatore sarà ovviamente esterno, così come il nuovo BMS, il che faciliterà la manutenzione in caso di problemi futuri, ma soprattutto permetterà di monitorare costantemente le celle.

Studiando il log dei tentativi di carica con BMS guasto, poi, potrei restringere la ricerca alla sola linea – su 20 – che dà effettivamente problemi, esaminando poi più a fondo i singoli componenti in cerca di microfratture, corti, o quant’altro. Il problema principale è che il BMS è costituito da due PCB a castello saldati tra loro, e al momento non riesco a separarli, il che rende ovviamente impossibile esaminare l’intero BMS…

20160924_171156

 

Mentre aspetto che arrivino i pezzi, forse potrei rimettere in servizio una vecchia batteria LiCoO2 dello Zem, che da sola tira fuori ben poca corrente ormai, ma comunque potrebbe aiutare un po’ la povera batteria superstite.

Avevo totalmente dismesso, ma non buttato, le vecchie batterie, sia perchè ormai davano poca corrente, sia perchè si era rotto il miliardesimo caricabatterie e non mi andava di spendere 90 euro per un altro…

Però tempo fa ho comprato due caricabatterie LiFePO4 per sostituirne uno rotto e averne uno di scorta: potrei provare ad abbassarne il voltaggio da 73 a 67.2, come necessario per caricare le LiCoO2; dovrebbe bastare ruotare il potenziometro giusto nella direzione giusta della quantità giusta

 


Intanto, sto considerando anche la possibilità di aggiungere finalmente una ulteriore batteria agli umili 36 Ah che ho ora (adesso temporaneamente ridotti addirittura a 18), visto che ho molto spazio disponibile: o per un’altra batteria come queste, o per “qualcosa” che entri in uno spazio di 25x15x30 cm. Le celle Panasonic NCR18650 da 3000-35000 mAh, 250 WH/kg e 650 Wh/L sembrano invitanti (a parte i pochi cicli, 300-500), specie ora che costano intorno ai 400$/kWh, ma anche le nuovissime celle NCM (Nickel-Cobalto-Manganese) sembrano molto invitanti (sarebbero l’evoluzione non incendiaria delle LiPo)… se solo qualcuno le vendesse! Al momento conosco quest’unico sito (Shenzen Westart Technology ltd.), che non è attrezzato per e-commerce ma solo per contatti diretti con aziende (come dire: per pagare bisognerebbe versare “a fiducia” 1000-2000 euro su un IBAN ricevuto per e-mail…).

Queste celle sembrano avere la stratosferica durata di 3-4000 cicli, una densità di 150-170 Wh/kg e sicurezza paragonabile alle LiFePO4. Da notare però che sono da 3,7V anzichè 3,3, quindi richiedono elettronica diversa dalle LiFePO4.

Se usassi celle del tipo 18650 potrei riutilizzare così com’è, senza modifiche e accrocchi, i contenitori delle vecchie batterie dello Zem, che erano composte da 96 celle (16S6P) LiPo di marca ignota ma dimensioni 18650; quelle erano da 4000 mAh, mentre le Panasonic NCR 18650 sarebbero da 3000 o al massimo 3500 (ce ne sono vari tipi), quindi arriverei, invece che a 24Ah, a 18-21 Ah.

Quelle vecchie batterie avevano un volume di circa 8 litri, quindi a livello di batteria avevano una  densità di  1440 Wh/8L = 180 Wh/L.

Con 96  celle panasonic da 650 Wh/L otterrei, nello stesso spazio, una batteria da 1260 Wh, cioè 157 Wh/L  (possibile che da cella a batteria si passi da 650 a 157 Wh/L?!?)

 

 

 

 

 

 

Diario elettrico Zem Star 45 – 26 aprile 2016: capitolo finale, la rottamazione

Posted in scooter elettrici by jumpjack on 25 aprile 2016

Zem Star 45 parcheggiato

Il 16 aprile 2011 iniziava la mia avventura nel mondo degli scooter elettrici, con l’acquisto di uno “Star 45” da 1500W della Zem s.r.l., azienda oggi non più esistente (come tante aziende che in questi 5 anni hanno provato a immettere scooter elettrici sul mercato italiano…), il cui sito è visionabile solo nel “museo storico” di internet.


Pagato 3300 euro con due batterie (contro i 4300 euro di listino) il 16 aprile 2011, immatricolato dal venditore il 26 aprile, andava su strada per la prima volta il 29 aprile; il mio “diario di bordo” iniziava il 3 maggio 2011. Dovetti letteralmente supplicare il venditore di vendermelo, perchè non voleva saperne: aveva in progetto di vendere solo a noleggiatori! E pensare che avrebbe potuto avere un mercato enorme: gli Zem (Star 45  e Smash 54) erano i primi scooter elettrici di nuova generazione venduti a Roma! Dotato di 2 batterie estraibili al litio, per un totale di 2880 Wh, coi suoi consumi di 35 Wh/km poteva vantare un’autonomia reale di 80 km; in precedenza, nei primi anni 2000, la capitale aveva visto entrare sul mercato diversi scooter elettrici di prima generazione: il Piaggio Zip, il Peugeot Scoot’elec, il Malaguti Ciak, l’Oxygen Lepton… tutte “lumache” al piombo, con autonomia pubblicizzata di 50 km e vita utile di 20.000 km…. mentre in situazioni reali arrivavano al massimo a 25-30 km, e le batterie duravano 8000 km (10.000 se le trattavi bene… facendo 10 km prima di ricaricare!) Senza contare che andavano da 0 a 50 km/h in 10-15 secondi.

Oggi qualunque scooter elettrico ha batterie al litio, autonomia reale minima di 50 km (media di 70, alcuni modelli arrivano a 100 e persino 120), durata delle batterie di 1000 cicli (quindi da 50.000 a 120.000 km!), e moltissimi ormai hanno batterie estraibili. Oggi come oggi solo i ciclomotori, che hanno batterie piccole; ma ormai le celle Panasonic NCR18650 hanno raggiunto il prezzo di 400 Euro/kWh, e pesano 1/3 delle LiFePo4 (250 Wh/kg contro 90) e occupano 1/4 dello spazio (730 Wh/l contro 200); quindi anche una batteria da 5 kWh oggi potrebbe essere estraibile, in quanto peserebbe quanto le due batterie dello Zem Star 45… e sarebbe grande quanto UNA!


Ne è passata di acqua sotto i ponti: all’epoca dell’acquisto, ecco a che razza di test sottoponevo, ignaro, le mie povere batterie!

Batteria completamente piena, spremuta fino all’ultima goccia. Passeggero di 75 chili. Strada asciutta. Fari spenti.

Percorso totale: 50,8 km.

(contachilometri di bordo; effettivi: 43)

Questo con una batteria da 24Ah! Oggi so che da una batteria da 60V/24Ah non si possono pretendere, senza rovinarla, più di 30km (Ah moltiplicato 1.2).

La batteria era composta da 96 celle organizzate in 16 paralleli in serie di 6 celle ciascuna, quindi una 16s6p; le celle non riportavano nessuna dicitura, ma essendo cilindriche (con fattore di forma 26650):

Batteria Zem Star 45 60V/24Ah li-ion LiCoO2 estraibile - 16S6P

Batteria Zem Star 45 60V/24Ah li-ion LiCoO2 estraibile – 16S6P

Celle “anonime” a confronto con 26650 A123 (dimensioni identiche, ma distorte dalla prospettiva):

Dimensioni batteria:

  • 37,5 x 8 x 26,5 (senza manico e rotelle)
  • 48 x 8 x 26,5 con manico e rotelle (dimensioni vano batteria singola)
  • 48 x 16 x 26,5 (dimensioni totali vano batterie)
  • Peso: 10 kg
  • Capacità: 60V/24Ah/1440 Wh
  • Volume: 8 litri
  • Densità gravimetrica: 144 Wh/kg
  • Densità volumetrica: 180 Wh/L
  • Cicli: 300-500

Post utili:

Solo oggi, dopo 5 anni, riesco ad apprezzare una particolarità di questa batteria: il fatto che avesse un unico connettore, sia per la carica che per la scarica. Tutti gli altri scooter elettrici che ho visto ne avevano 2 separati.

Oggi sono arrivato alla conclusione che questa batteria avesse la particolarità di supportarela frenata rigenerativa, in cui l’energia va dalle ruote alla batteria invece del contrario.

Purtroppo però aveva anche un lato negativo: non era LiFePO4 come quelle di oggi, ma era targata semplicemente “li-ion”, e credo che fosse una LiCoO2: stessa chimica (piuttosto pericolosa) delle LiPo da modellismo, ma un po’ più sicura avendo celle cilindriche rigide in alluminio, invece che morbide a sacchetto. Ma il vero problema è che duravano poco: dai 300 ai 500 cicli, contro gli almeno 1000 delle LiFePo odierne!

In realtà le batterie cedettero ben prima di 300 cicli: a novembre 2011, dopo appena 7 mesi dall’acquisto, non era più possibile circolare con una singola batteria… cosa che, però, era proprio l’origine del problema! Il manuale dello scooter raccomandava di non usare MAI le due batterie insieme, in parallelo, ma solo una per volta! Solo che così ogni batteria doveva erogare 1C continuo con picchi (forse) di 1.5 o 2C… almeno in modalità normale; lo scooter aveva però anche una modalità “turbo”, in cui la velocità era limitata a 45 km/h invece che 60, ma l’accelerazione in partenza era molto più bruciante… quindi le batterie erano molto più sollecitate. E per una svista del meccanico, avevo viaggiato per 2 mesi, senza saperlo, con lo scooter in modalità turbo…

Decisi così di iniziare a utilizzare lo scooter con le due batterie sempre in parallelo; riuscii così a guadagnare parecchi mesi prima di dover comprare una nuova batteria a settembre del 2012, quindi 1 anno e mezzo dopo l’acquisto dello scooter; alla fine però dovetti comprarla, pagandola 500 euro come prezzo di favore invece di 650, essendo forse l’unico cliente privato di lunga data… Il prezzo totale dello scooter diventò quindi 3800 euro.

Secondo i miei calcoli, 3800 euro si recuperano percorrendo 38000 km (non considerando il costo della corrente, ma solo il risparmio in benzina). Purtroppo non so quanto di preciso ho percorso con lo Zem, essendosi rotto il contachilometri: a spanne, però avendolo usato per 4 anni per fare tutti i giorni lavorativi 18 km, considerando complessivamente 6 mesi di “fermo macchina” per i vari guasti, direi che ho percorso circa 17000 km “di base”; a questi si aggiungono altri km, visto che usavo lo scooter praticamente per andare ovunque; non sono sicuramente arrivato a 38000 km, ma penso di aver raggiunto almeno i 25000 tra una cosa e l’altra. Significa quindi 2500 euro di benzina, a fronte di 3800 euro spesi per lo scooter; i 1300 euro che restano (che sarebbero stati 800 se avessi saputo come trattare le batterie…) sarebbero il prezzo che mi è effettivamente costato lo scooter.

Volendo conteggiare anche la  corrente, considerando 0,16 euro/kWh e 0,035 kWh/km, risulta un costo di 0,035 KWh/km * 0,16 euro/kWh = 0.0056 euro/km, che per 25000 fa la “bellezza” di 150 euro di corrente! 🙂

Quindi:

  • 3300 euro di scooter
  • 2500 euro risparmiati in benzina
  • 140 euro spesi in corrente

Totale costo effettivo scooter: 940 euro (1440 con la batteria aggiuntiva).

A questo costo andrebbero aggiunti i costi dei vari caricabatterie cambiati: non tutti i QUINDICI che si sono bruciati me li hanno cambiati in garanzia, 3 o 4 me li sono pagati da solo (mi pare 60 euro l’uno).

Ignoti i motivi di questo tasso di mortalità; unico sospettato: lo scintillone a ogni connessione/sconnessione della batteria al caricabatterie; forse evitabile con una resistenza di precarico. Che forse installerò nell’ecojumbo.


In questi anni non ho mai dovuto pagare il bollo, trattandosi di un mezzo elettrico. A partire dal 26 aprile 2016 dovrei iniziare a pagare annualmente 18,44 euro, come calcolabile sul sito ACI immettendo semplicemente la targa.

In realtà lo scooter è ormai stabilmente fermo nel parcheggio da un anno, cioè da quando ho acquistato un Ecojumbo 5000 usato per 1000 euro. Il diario di bordo dell’Ecojumbo inizia il 25 luglio 2014.

Dovrei pensare a rottamarlo… ma mi mettono pensiero i costi: 50 euro? 100? 150? Il passaggio dell’ecojumbo di proprietà mi è costato 180….

Così ho iniziato a informarmi; ecco qualche sito utile:

Teoria:

 

Pratica (a Roma):

 

Documenti necessari:

  • Carta di circolazione
  • Certificato di proprietà
  • Fotocopia del documento d’identità del proprietario
  • Targa del motociclo

 

Note importanti:

  • “non è possibile organizzare una demolizione “in proprio”. Alla consegna del veicolo, i centri di raccolta (demolitori autorizzati), tra l’altro, devono rilasciare al proprietario un certificato che riporta la data di consegna”
  • Se la radiazione avviene nel primo mese del periodo d’imposta, il proprietario non è tenuto al pagamento del bollo auto per quell’anno“. Quindi ho tempo fino a fine maggio 2016 per organizzarmi per la rottamazione… e per trovare un “sostituto” dello scooter, che al momento funge da colonnina di ricarica! Nel vano sottosella, infatti, risiedono stabilmente da quasi due anni i due caricabatterie, al riparo da vento e pioggia, ma al tempo stesso ben ventilati grazie alle varie aperture che ho fatto nel vano, ma che sono comunque protette dalle plastiche dello scooter.

Adesso dovrò comprare un costoso armadio elettrico! E dovrò fare i conti con  pioggia e ventilazione: i CB devono essere protetti dall’acqua ma avere un ottimo ricambio d’aria… motivo per cui finora li avevo tenuti nello scooter invece di impazzire a trovare un mobiletto.

 

 

Finalmente i dati sulla durata delle mie batterie al litio LiCoO2 (dopo più di 2 anni dall’acquisto dello scooter!!)

Posted in scooter elettrici by jumpjack on 1 giugno 2013

Nella ricerca che ho già citato in altro post c’è un grafico tristissimo:

cicli-LiCoO2

Se lo interpreto bene, significa che ad una temperatura media di 25°C, le mie batterie avevano un’aspettativa di vita di 85 cicli, utilizzando la “convenzione dell’80%”, mentre si sarebbero ridotte a metà capacità dopo appena 300 cicli.

Situazione addirittura peggiore ad alte temperature: tra 35 e 45 gradi, i cicli attesi sono tra 50 e 85!

Io comprai lo scooter a maggio 2011, e a settembre o ottobre dello stesso anno già iniziai a lamentarmi delle batterie, anche se mi rassegnai solo a novembre.

Dal 2 maggio al 2 ottobre sono 5 mesi, ma togliendo agosto diventano 4, per un totale di circa 90 giorni lavorativi, ognuno con un consumo minimo di 20km, pari a circa il 30% dell’autonomia possibile. Cioè, ogni 3 giorni completavo un ciclo di scarica del 100% (all’inizio lo facevo letteralmente, scaricando completamente le batterie!!!). Questo significa almeno 30 cicli completi di scarica, effettuati su batterie utilizzate, come da manuale, una per volta, quindi scaricate a 2C o addirittura 3C!! Il tutto in piena estate.

A 35°C i cicli attesi erano, guarda un po’, proprio 30!

Paradossalmente, se poi durante l’inverno le batterie non sono decadute altrettanto rapidamente è proprio perchè col freddo durano di più…

A ottobre 2012, quindi un anno e mezzo dopo l’acquisto, le batterie non erano più ragionevolmente utilizzabili nemmeno in parallelo, per fare 20 km al giorno, e ne ho comprata una definita “seminuova” dalla ZEM, “con pochissimi cicli”; beh… considerando una vita massima di 200 cicli a 45° e un dimezzamento di capacità già a 100 cicli (trasscurando i rispettivi ridicoli 30 e 50 cicli), e considerando che molto probabilmente alla ZEM le scaricavano ogni volta al 100%, purtroppo devo constatatre che è normale che ora, 6 mesi dopo, anche la batteria nuova non vale più una cicca!

Adesso non mi resta che trovare i grafici di durata delle batterie in base alla temperatura anche per le LiFePO4; per il momento conosco solo i dati delle celle A123 ANR26650 a 2C/45°C: : durano 2000 cicli  (contro i TRENTA delle LiCoO2!!!)

 

Aggiornamento 2016:

http://ecec.mne.psu.edu/Pubs/2010-Zhang-JPS.pdf

 

batterie-lifepo4-cicli

Effetto della temperatura sulle batterie al lithio “li-ion” (LiCoO2)

Posted in batterie, scooter elettrici, Uncategorized by jumpjack on 1 giugno 2013

Finalmente qualche dato sugli effetti della temperatura sulle batterie al litio!

http://www.virginia.edu/ms/ecs/files/KUMARESAN.pdf

(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.593.9784&rep=rep1&type=pdf)

Queste dovrebbero essere proprio le batterie del mio Zem Star 45, che ha batterie al litio da 3,6 V, e che mi è stato detto “in giro” che non possono essere LiPo: quindi LiCoO2 dovrebbe essere l’unica alternativa rimasta, essendo le altre (mangamese e altro) troppo recenti (il mio scooter è di più di 2 anni fa).

Ho ricostruito il grafico in Excel:

temperatura-LiCoO2-1

E da quello poi ho desunto la capacità disponibile con scariche di 1C alle varie temperature, che sul mio scooter corrispondono a 48A; in realtà credo che sotto sforzo arrivi anche a 80, quindi sarebbero quasi 2C.

temperatura-LiCoO2

Immagino che a 2C la capacità si riduca a un 20 o 30% a zero gradi… 😦

Ecco infine un confronto tra i grafici in temperatura di queste batterie al litio e la batteria al piombo-gel (SLA) di un Etropolis:

Temperature performance comparison among Lithium (LiCOO2) and Lead (SLA) batteries

Temperature performance comparison among Lithium (LiCoO2) and Lead (SLA) batteries

Il mio giudizio professionale è “ammazza che schifo”. 😉

AGGIORNAMENTO 11/10/02013

Trovato nuovo grafico (per litio NMC):


http://www.altenergymag.com/emagazine/2012/04/a-comparison-of-lead-acid-to-lithium-ion-in-stationary-storage-applications/1884

 

Aggiornamento 2016:

Trovato grafico per LiFePO4:

batterie-lifepo4-temperatura

 

Andando a sovrapporre i grafici di LiCoO2 e LiFePO4:

batterie-lico-life-temp

Il grafico dice che sotto zero le batterie LiCoO2 sono pressochè inutilizzabili su un mezzo elettrico: a 1C (linea nera continua) hanno capacità praticamente nulla (non ci sono dati, ma la linea continua che ne rappresenta l’ideale continuazione è molto chiara), e anche a C/2 non si va oltre il 30%. Alla stessa temperatura di -5C le LiFePO4 dannò, sì, uno scarso rendimento… ma comunque mantengono un 40-50% della capacità, con poca differenza tra 1C e C/2.