Jumping Jack Flash weblog

Diario elettrico Greengo/Zhidou Icaro: 2 agoto 2019 – problemi al motore

Ieri mattina, nuovo tipo di problema, questa volta riguardante il motore: all’improvviso, durante la marcia a bassa velocità, l’auto ha iniziato ad accelerare a singhiozzo, nonostante il pedale dell’acceleratore fosse fermo, e l’ago del tachimetro ha iniziato ad andare su e giù a vanvera; mi sono fermato, ho spento e riacceso, e tutto ok, ma la cosa è un po’ preoccupante, perchè sembra decisamente un problema di lettura dei sensori di hall, quei 3 sensori che permettono al motorcontroller di sapere in ogni istante a che velocità e in che direzione si sta muovendo il motore; il che vuol dire che se le letture sono a vanvera, la centralina potrebbe “ingranare la retromarcia” in qualunque momento…

Stamattina ho dato una controllata a fili, cavi e cavetti, ma non mi sembra ci sia nessun falso contatto; però il problema si è ripresentato un paio di volte, e una volta anche quando ero in velocità. Mettendo un momento in folle su “N” e poi di nuovo in drive su “D” il problema sembra risolversi, ma il differenziale non è molto contento di queste accelerazioni/decelerazioni improvvise, quindi questo sembrerebbe proprio essere un motivo in più per disattivare la famigerata rigenerazione in frenata, che secondo la Kelly, che fabbrica il motorcontroller, potrebbe essere la causa degli improvvisi, salturari depotenziamenti.

L’alernativa sarebbe forse cambiare il cavo che contiene i fili del sensore di hall, che magari si è deteriorato; ma il cavo costa 30 euro e la spedizione dalla Cina 35 euro….

Vedremo.

——————

A proposito del problema del depotenziamento, sono arrivato per ora a  questa conclusione:

il depotenziamento ha due possibili cause: il BMS, e il motorcontroller;

  1.  pare che il BMS sia tarato per tagliare la potenza se legge una differenza di tensione superiore a un tot tra cella più alta e cella più bassa; in origine sono 300 V, ma pare che nelle versioni successive di auto e/o BMS abbiano modificato o tolto questo limite, come è stato fatto sulla mia Icaro. Sulla quale però ogni tanto, anche se più raramente, il problema si ripresenta. E quindi entra in gioco una seconda possibile causa.
  2. anche il motorcontroller è tarato per tagliare la potenza in base alla tensione, ma di tutta la batteria: succede sia in accelerazione, se la tensione scende troppo, che in frenata rigenerativa, se la tensione sale troppo.

Abbassamenti eccessivi non ne ho mai rilevati in accelerazione, nonostante i 250A tirati fuori al posto dei 150A di origine (a seguito di una mia rimappatura della centralina), ma in compenso a volte mi è capitato di trovare la batteria a 81V la mattina, appena caricata, e a volte addirittura a 85V se si era appena spento il caricabatterie; trattandosi di 24 celle, significa 3.375V  e 3,54V per cella; se in questa situazione esco dal parcheggio, che ha una rampa in discesa, la tensione probabilmente sale ulteriormente (non ho un logger, devo vedere tutto a occhio), e la centralina va in protezione. Nella schermata 2 del SW di configurazione si possono impostare le soglie di intervento del regen (voce 5, nota 4)

La spiegazione dice:

  • Under voltage [3]: Controller will cut back current at battery voltage lower than 1.1x he value, cut out at the vale, and resume operation at 1.05x value
  • Over voltage [4]: Controller will cut back regen current at 0.95x the value, cut out regen if voltage reachd the setting, and resume regen at 0.95x value.

Traduzioni:

  • Sottotensione [3]: il controller ridurrà la corrente quando la tensione di batteria scenderà sotto 1.1 volte il valore impostato, la taglierà completamente quando raggiungerà esattamente il valore impostato, e la ripristinerà solo quando la tensione risalirà ad almeno 1.05 volte il valore impostato.
  • Sovratensione [4]: Il controller ridurrà la rigenerazione quando la tensione raggiungerà il 95% del valore impostato, lo azzererà al raggiungimento del valore esatto, e ripristinerà al ragiungimento  del 95%.

In questo caso ci interessa il punto 2 (sovratensione), l’altro riguarda la corrente esratta dalla batteria in accelerazione.

La Icaro monta 24 celle LiFePO4; in genere le LiFePO4 (ma ce ne sono tante varianti) hanno tensione massima di 3.33V e tensione di ricarica finale di 3.65V; a livello di batteria quste tensioni equivalgono a 80V e 87,6V. La tensione di ricarica finale permane però solo finchè resta collegato il caricabatteria; quando si stacca, la tensione decade spontaneamente a 3.33V/80V.

Il 95% di questi due valori massimi è:

  • 80.0 * 0.95 = 76 V
  • 87.6 * 0.95 = 83.2 V

Non ho invece modo di sapere quali sono i valori di intervento del BMS, quindi devo supporre che il BMS non effettui nessun intervento, ed agire quindi solo sul motorcontroller, assicurandomi che riduca la tensione di regen quando la tensione supera i 76V, e lo tagli completamente se supera gli 80V.

Purtroppo non ricordo a quanto impostai questa soglia l’anno scorso, però so che sia in ufficio che a casa l’uscita dal parcheggio (occasione in cui spesso si verifica il depoteniamento automatico) c’è una rampa in discesa; se a casa sicuramente parto con la batteria a 80V (a volte anche 81V), in ufficio, dopo 10 km di viaggio, mi pare difficile partire con questa tensione, ma la verità è che non ho mai controllato, mi sono sempre limitato a controllare che la tensione di cella non SCENDESSE sotto livelli critici, non ho mai pensato a verificare che non salisse troppo.

Dovrò quindi risistemare un po’ i parametri della centralina: o disattivo completamente il regen – cosa che renderebbe solo fastidioso, anzichè pericoloso, il problema dei sensori di hall –  oppure cambio la soglia di intervento in modo che la tensione di batteria non superi mai gli 80V a causa del regen.

 

 

Hacking Icaro – il motor controller o centralina

Posted in minicar elettriche by jumpjack on 12 giugno 2019

Premessa

La mia Greengo/Zhidou/Xindayang Icaro modello A1 monta un motor controller della Kelly di tipo KHB72701C, alimentata dai 12V della batteria di servizio e dai 72V della batteria di trazione, che regge 350A continui e 700A di picco (max un minuto).

Considerando un’alimentazione di 72V nominali (che arriva anche a 80V reali a batteria piena), queste correnti corrispondono a 25-28kW continui e 50-56 kW di picco, a fronte dei 6 kW continui assorbiti dal motore della A1 (8 kW di picco nominalmente, che io ho portato a 12 kW riprogrammando il controller).

 

La comunicazione seriale

Oggi finalmente sono riuscito ad avere dalla Kelly un’informazione davvero preziosa: il protocollo di comunicazione tramite porta seriale RS232!

Normalmente usavo la porta seriale per riprogrammare i vari parametri (corrente massima, velocità massima, frenata rigenerativa), tramite l’apposito SW gratuito della Kelly, ma con queste nuove informazioni diventa ora anche possibile leggere una bella quantità di dati:

  1. current physical switch input status
  2. the current Hall sensor “A” signal status
  3. the current Hall sensor “B” signal status
  4. the current Hall sensor “C” signal status
  5. Copying flash data to ram before flash data reading operation
  6. controller’s model no
  7. controller’s SW version (BCD format)
  8. controller’s Throttle low-end dead zone
  9. controller’s Throttle high-end dead zone
  10. controller’s Brake low-end dead zone
  11. controller’s Brake high-end dead zone

E poi i livelli di questi valori analogici:

Gruppo 1 (comando ETS_A2D_BATCH_READ)

0. Brake (posizione pedale freno)

  1. TPS (posizione pedale acceleratore)
  2. Motor temperature
  3. Control power
  4. Vs (tensione di riferimento di 5V dei sensori di hall)
  5. B+ (tensione batteria di trazione)
  6. Controller’s temperature
  7. Ia
  8. Ib
  9. Ic
  10. Va
  11. Vb
  12. Vc
  13. H_Temperature
  14. V+ (tensione alimentazione motor controller – 12V nominali)
  15. L_Temperature

 

Gruppo 2 (Comando ETS_MONITOR):

0. n/a

  1. n/a
  2. Controller’s temperature in gradi Celsius
  3. B+ (tensione batteria di trazione)
  4. TPSx (?)
  5. BRAKEx (?)
  6. n/a
  7. I (phase current)
  8. zero current (?)

E infine:

  • 9. MSB of controller’s error state
  • 10. LSB of controller’s error state
  • 11. MSB of mechanical speed in RPM
  • 12. LSB of mechanical speed in RPM

La numerazione è quella della stringa di risposta del controller.

I codici di errore

La codifica dei codici di errore è piuttosto complicata, e si basa su questa tabella:

data[9]M 7 6 5 4 3 2 1 0 data[9]L
0x44 0x43 0x42 0x41 0x34 0x33 0x32 0x31
data[10]M 7 6 5 4 3 2 1 0 data[10]L
0x24 0x23 0x22 0x21 0x14 0x13 0x12 0x11

La sua interpretazione è parecchio complicata, ho provato a semplificarla, innanzitutto affiancando le due sotto-tabelle relative a data[9] e data[10], che sono MSB e LSB della word, risultando così questa tabella:

Le istruzioni dicono “if(data[9] << 8) | data[10]=0x4008,The corresponding error code is 0x43and 0x14.”.

Cioè, “se il numero che si ottiene affiancando data[9] e data[10] come nella tabella qui sopra è uguale a 0x4008, vuol dire che il codice di errore è ‘0x43 e 0x14′

Questo perchè 0x4008 si può scomporre in 4 – 0 – 0 – 8, che in binario diventa 0100 – 0000 – 0000 – 1000, e mettendo questa fila di 1 e 0 sotto la tabella, si ottiene che bisogna considerare le sole caselle in coincidenza degli 1, ottenendo quindi appunto 0x43 e 0x14.

Al momento però non dispongo ancora di una tabella che dica cosa significhino questi numeri, vedrò se riesco a farmela dare.

Intanto però ecco un’altra tabella, che riassume tutti i comandi elencati nella nota tecnica che mi hanno mandato:

 

La tabella sopra descrive il formato della stringa di comando da inviare sulla seriale, quella sotto la risposta ricevuta.

A me pare che le caselle rosse siano sbagliate, perchè dicono che il comando dovrebbe essere lungo un byte ma io ne vedo 2, quindi dovrò chiedere chiarimenti… anche se al momento lo stato dei sensori di hall è decisamente la cosa che mi interessa di meno.

Le ultime due righe della tabella sotto, anche se si leggono poco, contengono i dati descritti estesamente a inizio articolo.

Adesso devo “solo” o trovare un programma per leggere/scrivere dati grezzi sulla seriale,… o scrivermelo.

La documentazione

Cercando su google il titolo del documento che la Kelly mi ha mandato ho trovato due link utili:

C’è poi anche la risposta a un mio vecchio post su Endlesssphere, che suggerisce che le Kelly aderiscano allo standard SAE J1939-21 , che permetterebbe di leggere questi dati:

[*]The running direction
[*]The high and low speed
[*]Mode selection
[*]Speed low byte (motor rpm)
[*]Speed high byte (motor rpm)
[*]Low power consumption mode
[*]Subtotal mileage. low byte
[*]Subtotal mileage. high byte
[*]Fault code
[*]DC voltage- low byte
[*]DC voltage – high byte
[*]Motor current- low byte
[*]Motor current – high byte

Questo potrebbe essere un dispositivo utile per collegarsi al CANBUS, tramite PC o tramite Arduino:

https://www.cooking-hacks.com/documentation/tutorials/can-bus-module-shield-tutorial-for-arduino-raspberry-pi-intel-galileo

 

Diario elettrico GreenGo Icaro: la frenata rigenerativa

Posted in Diario elettrico GreenGo Icaro, minicar elettriche by jumpjack on 16 marzo 2018

PAGINA DI SPERIMENTAZIONE – INFORMAZIONI DA CONFERMARE!!!

Il manuale della centralina KHB72701 non contiene istruzioni dettagliate sui vari metodi di regen utilizzabili, e la versione inglese della schermata di configurazione è piuttosto criptica:

 

Ho provato a dare una mia interpretazione, anche con l’aiuto di qualche scambio di mail con la Kelly:

 

La centralina supporta 3 tipi di regen:

  1. release throttle regen: regen attivato appena l’acceleratore arriva a zero; potenza fissa programmabile, ma non modificabile dal guidatore; indipendente dal regen attivato da pulsante e sensore.
  2. brake switch regen: pin  J2/10 (brake switch) a massa = regen attivato da interruttore; il solo interruttore causa una frenata rigenerativa di intensità fissa pari a quella indicata dallo slider,  stabilita in sede di programmazione e non modificabile dal guidatore; il flag però abilita anche la lettura di un eventuale sensore, se specificato nella lista di scelta sotto.
  3. brake sensor: collegando, oltre al suddetto pulsante al pin J2/10 (brake switch), un opportuno sensore sul pin  J2/6 (brake analog input)  è possibile far dosare in tempo reale al guidatore la potenza del regen, probabilmente da 0 a 100% (slider (3), nota [4]), al contrario del regen di tipo on/off (“brake switch regen”). Questo sensore (“brake sensor”)  può essere di tipo attivo (sensori di hall tra 0,5V e 4,5V – non chiaro) o passivo (un potenziometro a tre fili, esattamente come l’acceleratore, così cablato:
  • 5V dal pin J2/7 – 5V supply output
  • massa da pin J2/2 – RTN
  • segnale verso pin J2/6 (brake analog input)

In questo progetto usano un sensore di pressione inserito nel circuito del servofreno, in modo da creare una frenata rigenerativa che va in parallelo alla  frenata meccanica.

Quindi si può avere frenata rigenerativa:

  1. O rilasciando l’acceleratore (potenza fissa)
  2. O premendo un pulsante (potenza fissa)
  3. O premendo un pulsante e inviando un segnale tra 0.5 e 4.5 volt alla centralina (potenza variabile)

 

Note:

  1. La centralina “taglia” automaticamente la corrente di regen se la tensione di batteria sale troppo. Il manuale avvisa che per tale motivo la frenata rigenerativa può anche annullarsi del tutto e senza preavviso, e che quindi è bene non affidarsi solo ad essa per frenare. Quando questo succede, il led rosso lampeggia con sequenza “*, **” (lampeggio, pausa lunga, lampeggio, pausa breve, lampeggio, pausa lunghissima).
  2. Il pin J2/6 è in comune tra:
  • sensore di frenata per regen (0,5-4,5V)
  • pulsante boost (attivo se >4.2V)
  • pulsante eco  (attivo se >4.2V)

 Quindi le tre funzionalità non possono essere implementate insieme, se ne può scegliere solo una.

3. C’è un altro pin che sembra relativo al freno, il pin J1/12 (“12V brake”); in realtà non si tratta esattamente di un freno, ma di un blocco di sicurezza: quando sul pin si applicano 12V, la centralina si spegne; la cosa può avere a che fare col freno nel senso che, collegando il pin a un interruttore sul freno, si impedisce che la centralina invii corrente al motore mentre si sta frenando.

 

 


Schermata 3: configurazione “boost” o “eco mode”; essendo controllati entrambi dallo stesso pin J2/6 (brake analog input), non sono disponibili insieme; inoltre probabilmente nessuno dei due è disponibile se effettivamente è sempre il pin J2/6 (brake analog input) a gestire il regen graduale, come sembrerebbe (v. sopra).

Diario elettrico GreenGo Icaro: programmazione centralina riuscita!

Posted in Diario elettrico GreenGo Icaro, minicar elettriche by jumpjack on 15 marzo 2018

Sono riuscito a “entrare nel cervello” della icaro! :-)
La centralina è proprio una Kelly KHB72701 , e guarda caso sul mio scooter elettrico Ecojumbo 5000 2 anni fa ho montato una centralina Kelly e ho imparato a riprogrammarla.
Accedere a quest’altra centralina, anche se di modello diverso (KHB invece che KEB) è stato tanto facile quanto era stato difficile collegarsi a quella dello scooter: stavolta ho dovuto solo collegare il cavo seriale e avviare il programma! :-) Basta solo ricordarsi di tenere premuto (=scollegato) il pulsantone rosso di emergenza dentro l’abitacolo, che scollega la batteria di trazione: in fase di programmazione, la centralina deve essere alimentata a 12V dalla batteria di servizio.
Magicamente è comparsa la prima schermata di configurazione.
Ce ne sono 6 , si possono cambiare decine di parametri, alcuni dei quali è meglio evitare del tutto per non “brickare” il mezzo.
A me interessava soprattutto lo slider che imposta la percentuale della velocità del motore rispetto alla massima possibile: visto che quando arrivo a 60 km/h leggo che il motore assorbe solo 75A (5 kW) pur essendo da 6 kW continui e 12 kW di picco, mi aspettavo di trovare lo slider sul 60%… invece era già al 100%! Come anche lo slider della corrente, che indica la percentuale rispetto alla corrente tollerata dalla centralina; per la 72701 la corrente nominale è 350A… ma anche qui lo slider è al 100%, eppure in accelerazione il picco massimo raggiunto è di 195A!
Purtroppo mi sa che c’è un qualche altro limitatore da qualche parte sotto al cofano… Forse nella “Power Distribution Unit”, chissà.

In compenso, sono riuscito ad attivare la frenata rigenerativa; per ora l’ho impostata in modo che si attivi quando si rilascia l’acceleratore, ma sono possibili varie impostazioni che dovrò studiarmi.

Devo anche studiarmi i tre metodi di controllo: controllo di coppia, controllo di velocità e bilanciato tra i due. Dal manuale non è per niente chiaro cosa significhi; nel primo caso pare che la posizione dell’acceleratore sia proporzionale alla corrente inviata al motore, e quindi alla sua coppia e ripresa, mentre nel secondo caso sarebbe proporzionale alla velocità; al momento è impostato su “coppia”.

La centralina è anche predisposta per portare sul cruscotto i LED di stato, un pulsante ECO e un pulsante BOOST, e nessuna di queste cose è presente nella mia icaro, quindi immagino che prima o poi farò un upgrade, e a queste cose aggiungerò sul cruscotto anche un voltmetro per la batteria di servizio.


ho messo la rigenerazione al massimo….ma mi sa che toccherà mettere un accelerometro per accendere gli stop!
però la mappatura si può cambiare solo a motore spento, oppure impostare il regen in modo che sia controllabile da interruttore o da manopola.


 

Ho provato diverse mappature, ma non c’è proprio verso di schiodarsi dai 60 km/h! Ma a 60 km/h l’auto mostra di assorbire meno di 6kW, quindi proprio non capisco; ho ricontrollato i cavi, e i cavi di fase del motore sono collegati direttamente alla centralina, non passano per la Power Distribution Unit, che quindi non può in alcun modo “segargli” la corrente; però dalla PDU partono i cavi che arrivano alla centralina… Possibile la corrente sia limitata a monte? Ma in che modo però, visto che in accelerazione la centralina arriva regolarmente ad erogare 200A? E’ veramente strano.

Ho provato anche a cambiare da “controllo in coppia” a “controllo in velocità”; risultato: velocità massima 40 km/h, e uno spunto da sgommata! Ok, da scartare….

Per quanto riguarda il regen, ho provato varie mappature, ma considerando tutte le opzioni indipendenti possibili vengono fuori qualcosa come 5 combinazioni diverse e 20 sotto-combinazioni…
Questa è la schermata di configurazione del regen:

 

kelly controller regenerative braking configuration - KHB72701

kelly controller regenerative braking configuration – KHB72701

 

L’attivazione su rilascio dell’acceleratore non è come ci si aspetterebbe: è comunque on-off, cioè appena l’acceleratore arriva a zero, la rigenerazione va al massimo valore impostato! il che significa arrivare a produrre 100-110A in rigenerazione! (7 kW) E l’auto frena decisamente parecchio… abbastanza da rischiare di venire tamponati dal classico idiota che sta appiccicato dietro; non so se si accendono gli stop quando parte la frenata rigenerativa, ma a giudicare da quanto si appiccicava la gente dietro direi di no, ma devo verificare, forse c’è un qualche flag; o forse dovrò montare un accelerometro…
Altre possibilità per l’attivazione del regen sono:
– interruttore separato
– manopola
– acceleratore rilasciato + freno (l’ho provata ma non mi funziona, il regen non parte proprio)
– sensore analogico di frenata, a sensori di hall o a potenziometro… ma non ho capito bene come funziona la faccenda: forse andrebbe messo un sensore sul freno?

Sul cruscotto c’è spazio per diversi interruttori e manopole, predisposti per chissà quali utilizzi… che potrei usare per “evolvere” la mia icaro: per esempio, c’è la manopola per l’aria condizionata… ma è finta, perchè l’A/C non c’è, quindi potrei utilizzarla per rendere regolabile la rigenerazione; c’è la predisposizione per 5 o 6 pulsanti sotto detta manopola: potrei usarne uno per il boosto, e magari usare le altre posizioni per i led di stato della centralina.
E chi più ne ha più ne metta.
Penso che comprerò (di nuovo) questi spinotti, dopo averli già comprati per l’ecojumbo:

6 pin (http://kellycontroller.com/pin-waterpro … p-820.html):
Immagine

9 pin (http://kellycontroller.com/pin-waterpro … -1105.html):
Immagine

in questo modo potrò “inserirmi” nelle connessioni esistenti senza fare accrocchi strani: interporrò un mio cavetto a Y, da cui deriverò tutti i pin che mi servono.
Nei cavi attuali i pin sembrano già tutti cablati, ma a quanto pare in realtà non tutti sono usati, visto che non ci sono pulsanti boost, eco e led vari. Credo sia usato solo il pin che legge la corrente usata dalla centralina.


Forum di riferimento

 

Diario elettrico GreenGo Icaro: riprogrammazione centralina

Posted in Diario elettrico GreenGo Icaro, minicar elettriche by jumpjack on 12 marzo 2018

Proseguono i miei studi che preludono alla riprogrammazione della centralina Kelly KHB72701.

A quanto pare non c’è modo di scollegare la centralina dalla batteria staccando i cavi: dalla parte della centralina i serraggi sono chiusi in guaina termorestringente; dalla parte della Power Distribution Unit i cavi sono solo avvitati… ma dopo averli completamente svitati, non si sono sfilati! Ci dev’essere un sistema di serraggio di sicurezza che non conosco, e che non voglio forzare; dovrò far affidamento sul “pulsantone” di emergenza rosso di bordo che credo scolleghi la sola batteria di trazione, lasciando però attiva la batteria di servizio. Questo dovrebbe mettere la centralina automaticamente in condizioni di essere programmata, perchè deve essere alimentata solo dal pin 1 del cavo j1, non dai cavi di potenza; quindi dovrebbe bastare collegare il cavo seriale e via. Quando ho riparato il connettore guasto, col pulsantone abbassato il led verde della centralina era acceso, quindi dovrebbe funzionare.

Però c’è un problema: non c’è spazio. Sul lato destro della centralina, da dove escono tutti i cavi di controllo (J1, J2 e connettore seriale) c’è la batteria di servizio, che è vicinissima… al punto che già i cavi J1 e J2 sono costrettissimi, anche troppo: fanno una strettissima piega e toccano la batteria. Sono a rischio danneggiamento! Dovrò sistemarli in altro modo. Mi è stato detto che la batteria non è originale, ne è stata messa una più  grossa… e questo è il risultato!

Comunque, così come non c’entrano i cavi J1 e J2, non c’entra neanche il cavo seriale! Allentando la batteria e spostandola temporaneamente, però, il cavo entra; sembra che dovrò fare un po’ un accrocco per la riprogrammazione…

Comunque, ricapitolando, le fasi saranno queste:

  1. Accensione quadro (per alimentare centralina);
  2. Sconnessione pulsante rosso di emergenza (per scollegare batteria ad alta tensione);
  3. Verifica carica batteria (se si scarica durante la riprogrammazione, si potrebbe danneggiare la centralina);
  4. Collegamento cavo seriale tra centralina e PC;
  5. Avvio programma sul PC.

L’interfaccia del programma si avvia solo se il programma stesso legge correttamente la connessione, quindi saprò subito se funziona.

I cavi

A proposito dei cavi J1 e J2: J2 è lo stesso cavo che c’è nella mia Kelly KEB72801, e veicola i segnali importanti:

J2 Pin Definition

1- PWR: Controller power supply (input)
2- RTN: Signal return, or power supply return
3- RTN: Signal return
4- Motor temperature input.
5- Throttle analog input, 0-5V
6- Brake analog input, 0-5V

7- 5V: 5V supply output. <40mA
8- Micro_SW: Throttle switch input
9- Reversing switch input
10- Brake switch input
11- Hall phase C
12- Hall phase B
13- Hall phase A
14- RTN: Signal return

J1, invece, contiene gli “optional”.

J1 Pin Definition

1- PWR: Controller power supply (output).
2- Current meter. <200mA – Valore della corrente assorbita dalla centralina
3- Main contactor driver. <2A – Interruttore di alimentazione principale
4- Alarm: To drive reverse beeper. <200mA – Avvisatore acustico di retromarcia (non presente nella mia icaro)
5- RTN: Signal return
6- Green LED: Running indication  – Led di stato: verde, centralina a posto
7- RTN: Signal return
8- Reserved
9- Boost Switch (only available on the controller with 32-bit micro)  – Modalità “boost” per il motore
10- CAN bus high
11- CAN bus low
12- 12V brake – Segnale freno (?)
13- RTN: Signal return, or power supply return
14- Red LED: Fault code.  Led rosso: problemi alla centralina

  • Il pin 2 sarebbe utile… ma sul cruscotto l’indicazione della corrente assorbita dalla batteria c’è già, quindi non  ci interessa.
  • Il pin 4 serve a pilotare un eventuale avvisatore acustico di retromarcia, non ad alimentare: il manuale dice che tale avvisatore va alimentato tramite il pin 1, che è connesso a sua volta al pin 1 del connettore J2, ma qui, per l’appunto, è “duplicato” per poterlo usare come uscita di alimentazione (per antifurto o contattore, dice il manuale).
  • Il pin 9 dovrei capire se è supportato dalla KHB72701, ma penso che dovrò chiedere alla Kelly.
  • Interessanti i pin 6 e 14, che permettono di “remotizzare” i LED di stato, ad esempio mettendoli sul cruscotto: così avrei saputo subito che c’era un problema alla centralina, prima ancora di aprire il cofano!

Vediamo invece in dettaglio i connettori circolari:

Connettore aviation a 14 pin centraline Kelly

Connettore aviation a 14 pin centraline Kelly

L’immagine sopra mostra le misure precise dei connettori J1 e J2 usati sulle centraline Kelly. Dovrebbe essere un GX20 a 14 pin, anche se sul datasheet le misure non sono esattamente identiche: il datasheet dà 15,5mm come diametro del nucleo nero, io ne misuro 16,5:

connettore-aviation-GX20-14-Kelly(ecojumbo-icaro)-datasheet

A me le misure vengono quasi tutte 1mm più grandi:

connettore-datasheet-mio.png

Ho persino verificato se il calibro è… calibrato, ed è ok, i millimetri di un righello li misura correttamente.

Purtroppo sembra che in Italia ci sia un unico posto dove poter comprare questo connettore: questo link ebay... finchè dura. Il prezzo è di 7,20 euro +3,80 di spedizione, quindi 11,00 euro.

Notare che questo connettore è anche SIMILE ad alcuni connettori Amphenol serie 97, standard MIL-DTL-5015, ma uno esattamente identico non sono riuscito a trovarlo. Notare la somiglianza:

conntettore-cofronto.png

Esistono almeno 4 o 5 disposizioni per i connettori Amphenol 97 a 14 pin, ma nessuna corrisponde al connettore Kelly.

 

Un altro connettore simile è il 19M o M19 della ATO: i pin sembrano disposti con gli stessi angoli, ma forse sono troppo vicini al centro, considerando che il diametro del nucleo interno è identico a quello dei Kelly e dei GX20:

conntettore-cofronto2.png

Diario elettrico GreenGo Icaro: primo guasto!!!

Posted in Diario elettrico GreenGo Icaro, minicar elettriche by jumpjack on 12 marzo 2018

Da non credere, ma dopo pochi giorni di vita, eccomi già al primo guasto! Ed un guasto ELETTRICO!

Per farla breve

Stamattina l’auto non si muoveva. Quadro regolarmente acceso, scritta READY, pulsante rosso alzato, pompa servofreno funzionante, tutti i servizi ok… ma l’auto non si muoveva di un millimetro!

I dettagli

Dovendo andare a lavoro, stamattina non ho potuto fare molto di più che controllare se i morsetti erano tutti serrati…. poi sono andato a lavoro a petrolio…

Tornato a casa, ho chiamato l’assistenza chiedendo lumi; il venditore ha detto che lui non ne sa niente, l’auto ha sempre funzionato. Il concessionario da cui l’ha presa lui mi ha dato qualche suggerimento: pare che sia un problema noto la difficoltà ad avviare le icaro col freddo, o a batteria di servizio non proprio carica, perchè non riesce ad alimentare “qualcosa”; il problema è che per ricaricarsi, deve essa stessa attivare il relè che le fa arrivare corrente dal DC/DC… in un assurdo circolo vizioso che impedisce l’avvio! Dice che conviene tenere in macchina uno “starter” per auto a benzina!!!

Pare però che qualcuno abbia fatto una certa modifica per risolvere questo problema… ma comunque non era il MIO problema: osservando la centralina, infatti, mi sono accorto che i LED rosso e verde erano spenti! No power! Il concessionario mi ha detto di provare a “resettare” staccando il fusibile da 40A che viene dalla batteria di alimentazione; l’ho fatto, ma non è servito.

Allora ho cominciato a smanettare un po’ cavi cavetti e morsetti e… ATTENZIONE! UN LAMPEGGIO! Toccando un cavo, si è acceso per un attimo il LED rosso sulla centralina! Ritoccandolo e tenendolo in posizione, il led rosso si è spento e si è acceso quello verde: centralina pronta! Ma appena ho tolto la mano dal cavo… PUF! Tutto spento!

Però ho ristretto l’area di ricerca del problema: il connettore a 9 pin che unisce motore e centralina.

Il connettore

Ecco come appariva il connettore, lato motore:

Sembra normale… ma manca una cosa fondamentale: il blocca-pin!

Senza questo pezzo, i pin inseriti da dietro sono liberi di tornare indietro quando si inserisce il maschio da davanti! …ed è proprio quello che è successo esattamente al pin 1, proprio quello di alimentazione della centralina! Arretrato talmente tanto da non essere più nemmeno visibile da davanti; l’ho spinto un po’ a mano e l’ho rimesso in pari, come si vede nella prima foto. Dopodichè ho montato il blocca-pin,  che di fatto impedisce alle linguette blocca-pin di alzarsi e sbloccare i pin; a sua volta il blocca-pin è bloccato da un’altra linguetta, insomma un complicato sistema di sicureza per un connettore dalla connessione ultrasicura… se ci metti tutti i pezzi!

Ora, un’assurda coincidenza astrale ha voluto che due anni fa io acquistassi una centralina Kelly per il mio scooter elettrico Ecojumbo, che viene fornita coi fili volanti, senza connettori; quindi comprai anche due connettori, uno a 6 e uno a 9 pin; ebbene… proprio QUESTI connettori, identici! Quindi ho potuto cannibalizzare la griglietta gialla dal mio Ecojumbo e montarla nel connettore della Icaro!

Ecco il connettore correttamente assemblato:

Sezione del connettore, per evidenziare il funzionamento del sistema di blocco dei pin:

Adesso tutto è tornato a funzionare perfettamente.

Fino al prossimo guasto. 🙂  …che potrei anche causare io, appena inizierò a riprogrammare la centralina…

Domanda: possibile si siano dimenticati di montare questo pezzo? Possibile sia caduto a me quando ho aperto il connettore ieri per esaminarlo e verificare come collegare la centralina per riprogrammarla? Per terra non ho trovato niente, e comunque non è che la griglietta si sfila e via: per toglierla dall’Ecojumbo ho dovuto fare leva con un cacciavite! Probabilmente mancava già, ma nell’aprire il connettore ho ovviamente tirato leggermente i fili dei pin; non sarebbe successo niente se ci  fosse stata la griglietta… ma non essendo presente, “mi è venuto dietro” il pin 1!

Mah.

Comunque, l’importante è che adesso tutto funzioni.

 

Diario elettrico GreenGo Icaro: riprogrammazione centralina

Posted in Diario elettrico GreenGo Icaro, minicar elettriche by jumpjack on 5 marzo 2018

Iniziamo a raccogliere un po’ di dati dai miei vecchi post sulla riprogrammazione della centralina dell’Ecojumbo, per fare ordine sulla procedura da seguire; questa è la configurazione che a me ha funzionato:

  • Windows 7
  • Antivirus disattivato
  • Programma installato in C:
  • Porta seriale reale (COM1) (preferibile ad un adattatore USB-seriale)
  • Centralina alimentata esternamente a 19V tramite i pin del connettore di segnale (PWR , cioè PIN1 di J2 o di J1, e GND, cioè PIN2) (i limiti di funzionamento sono 18-72V10-30V per le KHB).
  • Monitoraggio seriale tramite “HHD Device Monitoring Studio” ( Binary File, Serial Port, USB, Network Developer Software for Windows)
  • Per centraline KEB (quella dell’ecojumbo) e KHB (quella della Icaro) non servono adattatori seriali particolari, basta un normale cavo seriale (se si ha un PC con porta seriale) o un normale convertitore USB-seriale. Nota: i convertitori USB-seriale della prolific esistono anche in versione non originale, che non funzionano coi driver originali; però non so come distinguere un adattatore originale da un clone.

 

Più genericamente, le raccomandazioni del costruttore sarebbero queste:

  • Scollegare il motore dalla centralina durante la riprogrammazione, o quantomeno assicurarsi di non avviare il motore.
  • Alimentare la centralina con tensione tra 18 e 72V tramite il pin 1 del cavo J1
  • Usare Windows XP o 2000, perchè Win 7 e 8 potrebbero non essere compatibili
  • Non installare il programma nello stesso drive dove è installato l’antivirus
  • Disattivare l’antivirus

 

Altre note:

  • Non è chiaro se sia assolutamente necessario scollegare fisicamente il motore, prima di riprogrammare, o se basta assicurarsi di non accenderlo, così come non è chiaro se è necessario alimentare anche esternamente la centralina se è già connessa al veicolo.
  • La velocità di trasmissione del programma, a regime, è di 19200 baud (“19200,8,n,1”) , ma all’inizio la connessione viaggia a 1200 baud(“1200,7,n,1”).I parametri di connessione sono importanti perchè all’inizio conviene monitorare la connessione tramite “Free Device Monitoring Studio”, allo scopo di capire, in caso di problemi, se è il computer a non inviare segnali correttamente o la centralina a non rispondere.

 

 

Diario elettrico Ecojumbo 5000 – 15 marzo 2016: messa a punto centralina

Posted in Diario elettrico Ecojumbo 5000 by jumpjack on 17 marzo 2016

Passata la prima settimana di prove su strada, ho deciso di mettere mano alla centralina per mettere un po’ a punto le prestazioni: al momento, con questi settaggi, partendo da fermo con l’acceleratore a tavoletta vengo quasi disarcionato dallo scooter e la tensione di batteria scende paurosamente, quindi non è decisamente l’ideale… La velocità massima è di 82 km/h, e l’acceleratore, quand’è al minimo,non sempre viene letto correttamente dalla centralina. Questo perchè  applicando 3,75V , a riposo ottengo 0,88V (23,4%) e al massimo 2,95V (78,6%), mentre la centralina è impostata su  20% di minimo e 80% di massimo, valori troppo risicati (scelti infatti del tutto a caso…):

Configurazione acceleratore Ecojumbo su centralina Kelly KEB72801

Acceleratore Ecojumbo su centralina Kelly KEB72801 – configurazione 1 (prima del 15/3/2016) [schermata 1]

Ho scelto quindi questa nuova configurazione:

kelly-001-dopo2

L’acceleratore viene cioè “letto” come “zero” solo se è minore del 25%; la cosa è importante perchè c’è un’altra opzione sulla centralina che impedisce completamente di partire se all’accensione della centralina stessa l’acceleratore non risulta a zero (per motivi di sicurezza), dando l’errore (2,4) (schermata 2):

kelly-002-prima

Sicurezza acceleratore su centralina Kelly KEB 72801 – Configurazione 1 (pre 16/3/2016)  [schermata 2]

E’ l’opzione “Power on High Pedal disable” (che si leggerebbe meglio se scritta “Power-on high-pedal disable”, o meglio ancora “Disable if high-pedal detected at power-on”), perchè nella centralina l’acceleratore è chiamato “pedal” oltre che “throttle”.

Già che ci siamo, spieghiamo anche la seconda opzione, “Releasing Brake High Pedal Disable”: significa che se, quando si rilascia il freno, l’acceleratore non è a zero, il motore non parte.( Non so se dipende da questo il fatto che tirando il freno NON viene escluso il motore MA viene escluso se tiro indietro il pulsante sopra all’acceleratore: pensavo fossero sulla stessa linea di sicurezza, ma evidentemente non è così… o forse dànno due diversi livelli di tensione, non so… dovrò fare delle misure. )

“Si dice”, infatti, che su uno scooter elettrico sia obbligatorio disabilitare il motore a freni tirati. Non sono però mai riuscito a trovare la normativa che impone quest’obbligo. Forse dovrei cercare su una generica/fantomatica normativa sugli azionamenti elettrici in continua… ma io che ne so?!?

In questa stessa schermata, che riporto di nuovo per comodità per chi arriva a questo punto della pagina solo col FIND (CTRL+F)….,  si vede la tensione di “taglio sottosoglia” (Low Voltage Cutoff – LVC): in via estremamente prudenziale l’avevo inizialmente impostata a 60V:

kelly-002-prima

Tensione di sottosoglia per centralina Kelly KEB72801 – configurazione 1 [schermata 2]

La nota dice che le tensioni effettive di stacco e riattacco sono 60*1,1 (cioè 60 +10%) e 60*0,05 (cioè 60 +5%), cioè 66  e 63V; in questi giorni, tornando a casa dopo 20 km percorsi, era sui 64,5 , e ovviamente scendeva anche di più durante le accelerazioni. Però la nota mi sembra anche confusionaria: dice che la corrente viene tolta a 66V e riattaccata a 63… ma non ha senso! Semmai dovrebbe essere tolta a 63 e, quando poi la tensione risale a 66 perchè si è rilasciato l’acceleratore, essere riattaccata! Invece a me si staccava “a tensione indefinita dopo un tempo indefinito” (a volte sono stato anche a 58 per qualche secondo, e non ha staccato, mentre altre volte, in corsa, quando non riuscivo a leggere la tensione, staccava…), ma si è sempre riattaccata, benchè i 66V la batteria li raggiunga solo quando è completamente piena…

Mah. La morale della favola è che devo installare il voltmetro sul manubrio invece che sul “serbatoio”, dove non riesco a leggerlo in movimento quando ho il grembiule antivento… :-/

Comunque sia, ora ho impostato la soglia di LVC a 53V, che significa  55.65V e 58.3V:

Tensione di sottosoglia per centralina Kelly KEB72801 - configurazione 2 [schermata 2]

Tensione di sottosoglia per centralina Kelly KEB72801 – configurazione 2 [schermata 2]

 55.65V significa 2.78V/cella, mentre 58.3V significa 2.915V/cella (rispetto agli esagerati 3V di prima…). “Si dice”  che le LiFePO4 possano arrivare fino a 2.5V senza danneggiarsi, ma non vedo il motivo di stressarle tanto. Comunque, vedrò quanta autonomia riesco a raggiungere così. Sono anche finalmente riuscire a trovare una pinza amperometrica da 1000A DC e con uscita in tensione, quindi potrò finalmente tarare il powermeter comprato anni fa e mai utilizzato perchè starato.

La tensione di soprasoglia l’ho impostata a 74V rispetto ai 73V di tensione massima di ricarica, ma in realtà quando le batterie sono in ricarica sono staccate dallo scooter, quindi al momento questo valore è irrilevante. Devo ancora studiare un modo per ricaricare le batterie senza staccarle dallo scooter, perchè hanno un unico connettore sia per scarica che per ricarica, e devo capire se andando a ricaricarle mentre sono collegate vado anche a buttare corrente nelle varie utenze dello scooter  o no, e se devo aggiungere un interruttore che dovrei staccare ogni volta che ricarico… boh… Sono abituato a uno scooter con batterie estraibili, che dovevo per forza di cose ogni volta staccare dallo scooter pe ricaricare; ora che sono fisse nello scooter non so bene come gestirle…

Ma torniamo ora alla schermata 1, perchè è qui che si impostano, oltre alle tensioni dell’acceleratore, anche le correnti del motore e della batteria; questa era la prima mappatura:

Configurazione acceleratore Ecojumbo su centralina Kelly KEB72801

Configurazione acceleratore Ecojumbo su centralina Kelly KEB72801 – configurazione 1

Inizialmente avevo cioè impostato che la centralina prelevasse dalle batterie il 50% della corrente massima (50% di 140A, cioè 70A/4.6kW), e inviasse al motore l’80% (112A/7.4kW); però tirare fuori 70A da una batteria composta da due batterie da 18Ah significa estrarre da ciascuna 35A/2C, che è un po’ tanto; nella settimana di prove ho appurato che è anche inutile, e pure un po’ pericoloso, perchè così lo scooter ha un’accelerazione sconsiderata, al punto che se parto con l’acceleratore a tavoletta rischio di essere disarcionato!!! A me basta arrivare da 0 a 50 in 3 o 4  secondi, non in mezzo secondo! Quindi nella nuova mappatura ho impostato la corrente a 30% (42A/2.8kw, cioè poco più di 1C a batteria), molto più ragionevole, e 70% (98A/6.5kW) al motore:

 

kelly-001-dopo

Corrente di batteria – configurazione 2: 30% di 140A(=42A, 21A/batteria,  1.3C, 2.7 kW totali, max 70 km/h)

Infatti adesso il voltmetro dell’Ecojumbo non scende più di 2.5 tacche  su 3 quando accelero a fondo, ma solo di mezza tacca su 3 (non ho ancora verificato a quali valori effettivi corrisponde), ma l’accelerazione in partenza è ancora ottima, permettendomi di liberare gli incroci con la dovuta prontezza.

Come si nota, la corrente che va al motore è regolabile indipendentemente da quella estratta dalla batteria: questa “magia” (realizzata, credo,  da un DC/DC converter, che “trasforma” la tensione in corrente) è fondamentale per batterie sottodimensionate come le mie, perchè così posso preservarle senza dover rinunciare alle ottime prestazioni dell’ecojumbo. La conversione da tensione a corrente, infatti, fa sì che i “miseri” 42A/2.7kW prelevati dalla batteria diventino 98A quando vanno al motore; immagino che questo significhi che al motore non arrivano più i 66V della batteria, ma qualcosa in meno; ma tanto la tensione massima stabilisce solo qual è la velocità massima del motore… che ovviamente in partenza è minima, quindi in partenza serve poca tensione; serve invece molta corrente, perchè dalla corrente dipende l’accelerazione; si tratta quindi di “ridistribuire” opportunamente tra corrente e tensione la poca potenza disponibile proveniente dalle batterie: con 42A e 66V si hanno 2,8 kW; per avere 2,5 kW a 98A significa che la tensione scende a 28V, cioè che lo scooter può arrivare al massimo a 30-35 km/h. Ma stiamo per l’appunto parlando di “partenza” , “corrente di picco” e “accelerazione di picco”, quindi non è un problema: una volta partito lo scooter, la corrente cala drasticamente, per andare pian piano a risalire man mano che aumenta la velocità.

In teoria, per arrivare a 90 km/h dovrebbero servire oltre 6000W (anche se non ho dati certi su Frontal Area e Cx dello scooter, potrebbero essere 0.8 come 0.7 o 0.9…), nel qual caso con 2.8 kW potrei arrivare al massimo a 70 km/h…. che per l’appunto è la velocità che ho registrato nei test! Un po’ bassina, vorrei arrivare almeno a 80, ma sempre senza stressare le batterie; però secondo quella tabella servono 4.9 kW…. non so se ci riesco, prendendo dalla batteria solo 2.7kW! Lo vedo un po’ impossibile! Mi sa che dovrò per forza aspettare di installare una TERZA batteria per arrivare almeno a 54Ah, che significherebbe avere almeno 60A/3.9 kW continui disponibili. Solo che avevo intenzione di comprarla dopo aver fatto abbastanza km elettrici da equivalere i suoi 800 euro in benzina, ma l’acquisto della centralina nova mi è già costato… 6000 km di benzina! Dovrò farmi un po’ di conti.

Tutti gli altri settaggi, per ora, non li ho toccati; il regen non lo uso perchè sarebbe troppo complicato gestirlo con due batterie in parallelo.

kelly-003-prima kelly-004-prima kelly-005-prima

Diario elettrico Ecojumbo 5000 – 4 marzo 2016: di nuovo in sella!

Posted in Diario elettrico Ecojumbo 5000 by jumpjack on 4 marzo 2016

Nonostante la pioggia, il vento, la notte e persino la neve e i 6°C a marzo, sono riuscito finalmente a collaudare lo scooter!

Va che è una meraviglia!

Velocità massima raggiunta: 81.9 km/h di GPS (rispetto agli 82 dell’altra centralina).

Però:

  • dovrò abituarmi alla nuova risposta dell’acceleratore, totalmente diversa da prima
  • dovrò probabilmente rivedere la programmazione della centralina, perchè quando metto “a tavoletta” e parto come un razzo (quasi da non riuscire a tenere lo scooter), la tensione delle batterie scende a 54V! Troppo, non va bene. Però sulla centralina si può regolare la corrente estratta dalla batteria separatamente da quella inviata alla centralina. Per il momento sto usando i parametri di default:
    Max motor current: 100%
    Max battery current: 50%
    Il “50%” dovrebbe essere riferito alla corrente tollerabile dalla centralina, che è 140A, quindi si tratterebbe di 70A estratti da una batteria da 36Ah: 2C, quindi probabilmente è normale che scendano così tanto da 66V. Però non gli fa bene… Solo che ho ripreso la misura del vano batteria, e una terza batteria EcoItalMotor non ci entra per 3 mm di larghezzaper via di un tubo del telaio; forse potrei forzarlo un po’ sfruttandone l’easticità, sono solo 3mm su un pezzo di tubo lungo un metro… però  boh… Purtroppo dove prima avevo messo la mia batteria, dietro al sottosella, ora ci sta la centralina…. La vedo complicata.
    In compenso, in partenza da fermo su salita ripidissima lo scooter non ha problemi a partire senza bisogno di mettere l’acceleratore a tavoletta, e in questo caso la tensione delle batterie non scende in modo significativo.

Comunque sia, è finito il lungo periodo di sperimentazione al banco… ora si ricomincia con la sperimentazione su strada!

Riporto ancora una volta i link a tutti gli altri post di questa lunga avventura:

Riassunto: bruciatisi 13 MOSFET della centralina originale Ecojumbo marchiata “120A”, l’ho sostituita con una Kelly KEB-72801X da 8 kW (che supporta la frenata rigenerativa ma che non utilizzo dal momento che ho due batterie separate e sarebbe complicato).

Ora mi restano da fare alcuni lavori minori come:

  1. Re-installare diodi di separazione tra batterie
  2. Installare fusibili di potenza sulle singole batterie (per ora ci sono solo su centralina e contattore)
  3. Installare un interruttore di sicurezza per ogni batteria (attualmente ce n’è solo uno per tutto lo scooter)
  4. Installare i fusibili sulle linee di controllo del contattore e della reistenza di precarico
  5. Collegare separatamente i due voltmetri (attualmente, senza diodi sulle batterie, leggono ovviamente un’unica tensione)
  6. Fissare stabilmente i voltmetri (ora fissati col nastro isolante…)
  7. Spostare la scatola dei fusibili all’interno dello scooter, fissandola al telaio; attualmente è fissata al sottosella, mentre la centralina è fissata al telaio, quindi aprire lo scooter per fare manutenzione è diventato molto scomodo
  8. Comprare cavi di potenza con guaina morbida in silicone: i cavi da 16 e 25 mm2 che ho comprato sono veramente duri da piegare e ho l’impressione che siano troppo sotto sforzo nelle varie pieghe che fanno
  9. Capire perchè l’interruttore di emergenza dei freni non funziona
  10. Installare il bauletto (il sottosella ora è pieno di cavi…)

Diario elettrico Ecojumbo 5000: 26/02/2016 – Cablaggi definitivi

Posted in Diario elettrico Ecojumbo 5000, scooter elettrici by jumpjack on 26 febbraio 2016

Oggi ho fatto i cablaggi di potenza definitivi, con capicorda avvitati.
CLICCA QUI PER LO SCHEMA DEFINITIVO DEI CABLAGGI DI SEGNALE E DI POTENZA

 

Una prova più “pesante”, ma sempre in cortile, ha dato i risultati sperati: nessun riscaldamento dei fili anche con accelerate pesanti e partenze sulla rampa del garage con pendenza del 20%. Sono un po’ perplesso sulla risposta non lineare dell’acceleratore: dovrò abituarmici, o riprogrammarlo (la centralina Kelly è molto configurabile). E poi mi funziona l’interruttore di sicurezza sul manubrio, per disabilitare la centralina temporaneamente senza spegnerla, ma non funziona lo stesso meccanismo tirando i freni… boh. Comunque, un problema non grave, non so se è il caso di stare a perderci tempo.

Ora tutti (o quasi) i problemi elettrici sono risolti e lo scooter ha superato 3 livelli di test 🙂
1 – Con collegamenti volanti provvisori dei sensori di hall e delle fasi, il motore gira
2 – Con collegamenti stabili per gli hall, e provvisori a bassa potenza per le fasi, lo scooter cammina
3 – Con tutti i collegamenti stabili lo scooter cammina ed ha un’accelerazione da paura!

Adesso resta l’ultimo livello, il 4: il collaudo su strada. Prima però devo passare alla lavorazione meccanica invece che elettrica: fissare allo scooter la scatola dei fusibili, il contattore e la resistenza di precarico,rimontare le plastiche e riavvitare almeno una trentina delle 60 viti, giusto per evitare che lo scooter si smonti per strada…

Dovrei anche cambiare i diodi di separazione delle batterie, uno dei quali si è bruciato: ne ho comprati un paio grandi il doppio; non ho trovato un datasheet, ma quelli di prima erano da 50A e larghi 1×2 cm, questi sono dei mostri larghi 3×4 centimetri… che però non so come dissipare, dovrei avvitarli a una piastra di alluminio, che però dovrei bucare, ma non so come fare un buco tondo nell’alluminio…

Non si finisce mai….

 

Ecco un indice di tutti i passi che dopo lunghi mesi hanno portato a questo risultato.

INDICE DEGLI INTERVENTI DI SOSTITUZIONE CENTRALINA ECOJUMBO 5000 CON CENTRALINA KELLY