Jumping Jack Flash weblog

Collegamento di un CellLog8S/8m ad Arduino o a ESP8266

Posted in auto elettriche, batterie, hardware, scooter elettrici by jumpjack on 2 gennaio 2017

L’utente pa.hioficr sul forum https://endless-sphere.com/forums/viewtopic.php?f=14&t=20142 ha scoperto che è possibile leggere in tempo reale i dati di log di un CellLog (sia 8S con memoria che 8S senza memoria) semplicemente “agganciandosi” al pin TX dell’Atmel montato sul CellLog.

Questo significa che invece di spendere 40-50 euro per comprare un CellLog8S con memoria e infilarlo nel sottosella per poi aspettare di arrivare a casa per scaricare i dati letti, è in linea di principio possibile collegare al CellLog8M da 15 euro un ESP8266 da 8 euro che tramite Wifi invia dati a uno smartphone che li mostra in tempo reale sullo schermo durante la marcia; probabilmente è anche possibile scrivere un SW che legge i dati da più di un celllog contemporaneamente, sfruttando l’emulatore di porte seriali.

Questo è lo schema elettrico originale dell’autore:

celllog-000

 

Questa è una sua successiva modifica per implementare anche avvio del logging e reset del CellLog:

celllog-001

Di seguito la spiegazione del funzionamento che ho dedotto io dallo schema, inserita anche nella seconda edizione del mio libro “Guida alla costruzione di una batteria al litio per mezzi elettrici”, di imminente pubblicazione:

 

8.1.2. Materiale occorrente
Q1 = 2n3906 o altro PNP
R1 = R4 = R6 = R7 = 220 ohm
R2 = R5 = 330 ohm
R3 = 4700 ohm
U1 = U2 = optocoupler/fotoaccoppiatore a 2 canali, 5V, 8 pin, uscita a fototransistor di tipo NPN (es. Vishay ILD615, Fairchild MCT61, Isocom ISP827,… )
8.1.3. Spiegazione del funzionamento
Il circuito può essere suddiviso in 4 parti: le prime due ricevono dati dal CellLog tramite il primo fotoaccoppiatore e li inviano al microcontrollore esterno; le altre due ricevono invece dati dal microcontrollore e li inviano al CellLog tramite il secondo fotoaccoppiatore.
8.1.3.1. Rilevamento accensione
In Figura 127 è riportata la parte dedicata al rilevamento dell’accensione; notare che nella figura il transistor è stato capovolto rispetto allo schema originale reperito su internet, per renderlo coerente con la notazione standard di avere la corrente che scorre dall’alto verso il basso; inoltre lo schema è stato semplificato e ripulito, per facilitarne la comprensione, lasciando però inalterati i collegamenti e i componenti.
Il microcontrollore (MCU) è programmato per leggere sul pin MCU_CL8.1_DETECT lo stato del CellLog: quando il pin è “basso” (0V), vuol dire che il CellLog è acceso; normalmente questo pin è invece a 5V perché connesso all’alimentazione dell’MCU tramite R5 (che serve a limitare a 15mA la corrente Collettore-Emettitore quando il transistor è in conduzione); quando però il CellLog viene acceso, i suoi 5V arrivano, tramite la resistenza R4 (che limita la corrente a 23 mA) sul pin 4, e mettono in conduzione il fotodiodo 3-4, che mette a sua volta in conduzione il fototransistor 5-6, che mette a massa il pin MCU_CL8.1_DETECT.
celllog-002
Figura 127 – Rilevamento accensione
8.1.3.2. Lettura dati
Dobbiamo far “riflettere” sul piedino RX del microcontrollore esterno lo stato del pin TX del CellLog, tramite il fotoaccoppiatore; per farlo, usiamo il pin TX del CellLog per controllare la base di un transistor collegato all’ingresso del fotoaccoppiatore; il transistor serve a far sì che basti prelevare dal CellLog una piccolissima corrente (1 mA grazie a R3 da 4300 ohm) per attivare il fotodiodo, che richiede invece alcune decine di mA; in pratica è un transistor di disaccoppiamento, che cioè rende indipendenti gli assorbimenti di corrente di CellLog e fotoaccoppiatore.
celllog-003
Figura 128 – Circuito TX-RX con transistor PNP o NPN
Il progettista ha scelto di usare un transistor di tipo PNP, che viene acceso da una tensione di base negativa rispetto all’emettitore; l’emettitore va quindi collegato stabilmente alla tensione di alimentazione 5V, in modo che il transistor entri in conduzione quando TX va a 0V. Quando questo accade, succederà quanto segue, in sequenza:
1. Q1 si accenderà
2. Passerà una corrente nel fotodiodo 1-2
3. Si accenderà il fototransistor 7-8
Dobbiamo ora fare in modo che tutto ciò risulti in una tensione di 0V sul piedino RX del microcontrollore esterno, corrispondente al piedino 8 del primo fotoaccoppiatore, che è il collettore del fototransistor di uscita; per farlo, dobbiamo fare in modo che il piedino 8 si trovi normalmente a 5V, e venga portato a 0V solo quando si accende il fototransistor 7-8; bisogna quindi tenere il pin 8 costantemente collegato ai 5V del microcontrollore esterno, e il pin 7 alla sua massa; in questo modo, l’accensione del fototransistor 7-8, che avviene quando TX del CellLog va a 0, collegherà il pin 8 a massa tramite il 7, cioè metterà RX del microcontrollore esrerno a 0, riflettendo così esattamente lo stato del pin TX del CellLog.
Se non dovessimo avere disponibile un transistor PNP ma solo un NPN, occorrerà invertire la logica del circuito.
8.1.3.3. Reset
Il “cervello” del CellLog, un microcontrollore ATMEL, è dotato di un piedino di reset, che possiamo controllare tramite il nostro microcontrollore esterno; per farlo, al pin di reset colleghiamo il collettore del fototransistor 5-6 del secondo fotoaccoppiatore (pin 5); controlliamo questo fototransistor tramite il rispettivo fotodiodo 3-4, collegato al pin MCU_CL8.1_RESET del nostro microcontrollore esterno; basterà quindi mettere alto questo pin per mettere in conduzione il fotodiodo e il fototransistor e quindi resettare il CellLog.
celllog-005
8.1.3.4. Avvio log
Per far partire il logging è necessario premere per 3 secondi il pulsante 2 del CellLog (SW2); possiamo farlo fare al nostro microcontrollore esterno collegando l’interruttore in parallelo a un’uscita del secondo fotoaccoppiatore: quando sull’ingresso ci sarà una tensione di 5V (impostata via software), il fototransistor di uscita entrerà in conduzione chiudendo l’interruttore e avviando così il logging.

celllog-004

Altri rivenditori di batterie al litio in Europa

Posted in batterie, scooter elettrici by jumpjack on 30 settembre 2016
Tagged with: , , ,

Diario elettrico Zem Star 45 – 26 aprile 2016: capitolo finale, la rottamazione

Posted in scooter elettrici by jumpjack on 25 aprile 2016

Zem Star 45 parcheggiato

Il 16 aprile 2011 iniziava la mia avventura nel mondo degli scooter elettrici, con l’acquisto di uno “Star 45” da 1500W della Zem s.r.l., azienda oggi non più esistente (come tante aziende che in questi 5 anni hanno provato a immettere scooter elettrici sul mercato italiano…), il cui sito è visionabile solo nel “museo storico” di internet.


Pagato 3300 euro con due batterie (contro i 4300 euro di listino) il 16 aprile 2011, immatricolato dal venditore il 26 aprile, andava su strada per la prima volta il 29 aprile; il mio “diario di bordo” iniziava il 3 maggio 2011. Dovetti letteralmente supplicare il venditore di vendermelo, perchè non voleva saperne: aveva in progetto di vendere solo a noleggiatori! E pensare che avrebbe potuto avere un mercato enorme: gli Zem (Star 45  e Smash 54) erano i primi scooter elettrici di nuova generazione venduti a Roma! Dotato di 2 batterie estraibili al litio, per un totale di 2880 Wh, coi suoi consumi di 35 Wh/km poteva vantare un’autonomia reale di 80 km; in precedenza, nei primi anni 2000, la capitale aveva visto entrare sul mercato diversi scooter elettrici di prima generazione: il Piaggio Zip, il Peugeot Scoot’elec, il Malaguti Ciak, l’Oxygen Lepton… tutte “lumache” al piombo, con autonomia pubblicizzata di 50 km e vita utile di 20.000 km…. mentre in situazioni reali arrivavano al massimo a 25-30 km, e le batterie duravano 8000 km (10.000 se le trattavi bene… facendo 10 km prima di ricaricare!) Senza contare che andavano da 0 a 50 km/h in 10-15 secondi.

Oggi qualunque scooter elettrico ha batterie al litio, autonomia reale minima di 50 km (media di 70, alcuni modelli arrivano a 100 e persino 120), durata delle batterie di 1000 cicli (quindi da 50.000 a 120.000 km!), e moltissimi ormai hanno batterie estraibili. Oggi come oggi solo i ciclomotori, che hanno batterie piccole; ma ormai le celle Panasonic NCR18650 hanno raggiunto il prezzo di 400 Euro/kWh, e pesano 1/3 delle LiFePo4 (250 Wh/kg contro 90) e occupano 1/4 dello spazio (730 Wh/l contro 200); quindi anche una batteria da 5 kWh oggi potrebbe essere estraibile, in quanto peserebbe quanto le due batterie dello Zem Star 45… e sarebbe grande quanto UNA!


Ne è passata di acqua sotto i ponti: all’epoca dell’acquisto, ecco a che razza di test sottoponevo, ignaro, le mie povere batterie!

Batteria completamente piena, spremuta fino all’ultima goccia. Passeggero di 75 chili. Strada asciutta. Fari spenti.

Percorso totale: 50,8 km.

(contachilometri di bordo; effettivi: 43)

Questo con una batteria da 24Ah! Oggi so che da una batteria da 60V/24Ah non si possono pretendere, senza rovinarla, più di 30km (Ah moltiplicato 1.2).

La batteria era composta da 96 celle organizzate in 16 paralleli in serie di 6 celle ciascuna, quindi una 16s6p; le celle non riportavano nessuna dicitura, ma essendo cilindriche (con fattore di forma 26650):

Batteria Zem Star 45 60V/24Ah li-ion LiCoO2 estraibile - 16S6P

Batteria Zem Star 45 60V/24Ah li-ion LiCoO2 estraibile – 16S6P

Celle “anonime” a confronto con 26650 A123 (dimensioni identiche, ma distorte dalla prospettiva):

Dimensioni batteria:

  • 37,5 x 8 x 26,5 (senza manico e rotelle)
  • 48 x 8 x 26,5 con manico e rotelle (dimensioni vano batteria singola)
  • 48 x 16 x 26,5 (dimensioni totali vano batterie)
  • Peso: 10 kg
  • Capacità: 60V/24Ah/1440 Wh
  • Volume: 8 litri
  • Densità gravimetrica: 144 Wh/kg
  • Densità volumetrica: 180 Wh/L
  • Cicli: 300-500

Post utili:

Solo oggi, dopo 5 anni, riesco ad apprezzare una particolarità di questa batteria: il fatto che avesse un unico connettore, sia per la carica che per la scarica. Tutti gli altri scooter elettrici che ho visto ne avevano 2 separati.

Oggi sono arrivato alla conclusione che questa batteria avesse la particolarità di supportarela frenata rigenerativa, in cui l’energia va dalle ruote alla batteria invece del contrario.

Purtroppo però aveva anche un lato negativo: non era LiFePO4 come quelle di oggi, ma era targata semplicemente “li-ion”, e credo che fosse una LiCoO2: stessa chimica (piuttosto pericolosa) delle LiPo da modellismo, ma un po’ più sicura avendo celle cilindriche rigide in alluminio, invece che morbide a sacchetto. Ma il vero problema è che duravano poco: dai 300 ai 500 cicli, contro gli almeno 1000 delle LiFePo odierne!

In realtà le batterie cedettero ben prima di 300 cicli: a novembre 2011, dopo appena 7 mesi dall’acquisto, non era più possibile circolare con una singola batteria… cosa che, però, era proprio l’origine del problema! Il manuale dello scooter raccomandava di non usare MAI le due batterie insieme, in parallelo, ma solo una per volta! Solo che così ogni batteria doveva erogare 1C continuo con picchi (forse) di 1.5 o 2C… almeno in modalità normale; lo scooter aveva però anche una modalità “turbo”, in cui la velocità era limitata a 45 km/h invece che 60, ma l’accelerazione in partenza era molto più bruciante… quindi le batterie erano molto più sollecitate. E per una svista del meccanico, avevo viaggiato per 2 mesi, senza saperlo, con lo scooter in modalità turbo…

Decisi così di iniziare a utilizzare lo scooter con le due batterie sempre in parallelo; riuscii così a guadagnare parecchi mesi prima di dover comprare una nuova batteria a settembre del 2012, quindi 1 anno e mezzo dopo l’acquisto dello scooter; alla fine però dovetti comprarla, pagandola 500 euro come prezzo di favore invece di 650, essendo forse l’unico cliente privato di lunga data… Il prezzo totale dello scooter diventò quindi 3800 euro.

Secondo i miei calcoli, 3800 euro si recuperano percorrendo 38000 km (non considerando il costo della corrente, ma solo il risparmio in benzina). Purtroppo non so quanto di preciso ho percorso con lo Zem, essendosi rotto il contachilometri: a spanne, però avendolo usato per 4 anni per fare tutti i giorni lavorativi 18 km, considerando complessivamente 6 mesi di “fermo macchina” per i vari guasti, direi che ho percorso circa 17000 km “di base”; a questi si aggiungono altri km, visto che usavo lo scooter praticamente per andare ovunque; non sono sicuramente arrivato a 38000 km, ma penso di aver raggiunto almeno i 25000 tra una cosa e l’altra. Significa quindi 2500 euro di benzina, a fronte di 3800 euro spesi per lo scooter; i 1300 euro che restano (che sarebbero stati 800 se avessi saputo come trattare le batterie…) sarebbero il prezzo che mi è effettivamente costato lo scooter.

Volendo conteggiare anche la  corrente, considerando 0,16 euro/kWh e 0,035 kWh/km, risulta un costo di 0,035 KWh/km * 0,16 euro/kWh = 0.0056 euro/km, che per 25000 fa la “bellezza” di 150 euro di corrente! 🙂

Quindi:

  • 3300 euro di scooter
  • 2500 euro risparmiati in benzina
  • 140 euro spesi in corrente

Totale costo effettivo scooter: 940 euro (1440 con la batteria aggiuntiva).

A questo costo andrebbero aggiunti i costi dei vari caricabatterie cambiati: non tutti i QUINDICI che si sono bruciati me li hanno cambiati in garanzia, 3 o 4 me li sono pagati da solo (mi pare 60 euro l’uno).

Ignoti i motivi di questo tasso di mortalità; unico sospettato: lo scintillone a ogni connessione/sconnessione della batteria al caricabatterie; forse evitabile con una resistenza di precarico. Che forse installerò nell’ecojumbo.


In questi anni non ho mai dovuto pagare il bollo, trattandosi di un mezzo elettrico. A partire dal 26 aprile 2016 dovrei iniziare a pagare annualmente 18,44 euro, come calcolabile sul sito ACI immettendo semplicemente la targa.

In realtà lo scooter è ormai stabilmente fermo nel parcheggio da un anno, cioè da quando ho acquistato un Ecojumbo 5000 usato per 1000 euro. Il diario di bordo dell’Ecojumbo inizia il 25 luglio 2014.

Dovrei pensare a rottamarlo… ma mi mettono pensiero i costi: 50 euro? 100? 150? Il passaggio dell’ecojumbo di proprietà mi è costato 180….

Così ho iniziato a informarmi; ecco qualche sito utile:

Teoria:

 

Pratica (a Roma):

 

Documenti necessari:

  • Carta di circolazione
  • Certificato di proprietà
  • Fotocopia del documento d’identità del proprietario
  • Targa del motociclo

 

Note importanti:

  • “non è possibile organizzare una demolizione “in proprio”. Alla consegna del veicolo, i centri di raccolta (demolitori autorizzati), tra l’altro, devono rilasciare al proprietario un certificato che riporta la data di consegna”
  • Se la radiazione avviene nel primo mese del periodo d’imposta, il proprietario non è tenuto al pagamento del bollo auto per quell’anno“. Quindi ho tempo fino a fine maggio 2016 per organizzarmi per la rottamazione… e per trovare un “sostituto” dello scooter, che al momento funge da colonnina di ricarica! Nel vano sottosella, infatti, risiedono stabilmente da quasi due anni i due caricabatterie, al riparo da vento e pioggia, ma al tempo stesso ben ventilati grazie alle varie aperture che ho fatto nel vano, ma che sono comunque protette dalle plastiche dello scooter.

Adesso dovrò comprare un costoso armadio elettrico! E dovrò fare i conti con  pioggia e ventilazione: i CB devono essere protetti dall’acqua ma avere un ottimo ricambio d’aria… motivo per cui finora li avevo tenuti nello scooter invece di impazzire a trovare un mobiletto.

 

 

Diario elettrico Zem Star 45 – 24/4/2013 – Parte il progetto superbatteria!

Posted in scooter elettrici by jumpjack on 24 aprile 2013

Basta tergiversare! 🙂

Sono mesi che studio, cerco, calcolo, esamino, stimo e progetto, ora basta, rompiamo gli indugi e partiamo: o la va, o la spacca!

Ho appena ordinato 20 supercelle LiFePO4 a123 ANR26650 con linguette per un totale di 187 euro spedizione inclusa, un BMS da 48V 60/100A e uno da 60V 60/100A, a 170 euro spedizione inclusa; totale: 357 euro.

Il progetto consisterà nel realizzare DUE superbatterie: una da 48V e una da 60V, cioè una per il Lepton e una per lo Zem; entrambe a capacità bassissima (appena 2,3 Ah! Cioè 110 Wh sul Lepton e 138 Wh sullo Zem), ma a me interessa la potenza: queste celle consentono scariche continue di 30C/60A, il che significa 2,8 kW sul Lepton (motore da 1,8 kW)  e 3,6 kW sullo ZEM (motore da 1,5 kW)!

In realtà conto di spremerle meno: sullo Zem basta che riescano a tirare fuori 20-30A in accelerazione e sulle salite, ma è importante che abbiano un’alta capacità di ricarica, per potersi ricaricare rapidamente tra un’accelerazione e l’altra, e a 4C dovrebbero potersi ricaricare abbastanza rapidamente, anche considerando che 138 Wh sullo ZEM cossipondono a 5-6 km, mentre le salite che incontro io sono moooolto più brevi, e le accelerazioni ovviamente brevissime. Avrei dovuto fare conti precisi… ma avrei perso probabilmente altre settimane o mesi, quindi ho deciso di darci un taglio! Spero solo di finire il mio logger prima che arrivi il tutto, è probabile che in meno di una settimana sia arrivato già tutto!

Chiaramente sul Lepton la superbatteria servirà a poco, non avendo ancora comprato la batteria-base, ma in attesa di decidere quale comprare, farò un po’ di sperimentazione: potrei anche scoprire che posso rimettere le batterie al piombo, ma magari grandi la metà visto che lo spunto lo darebbe la superbatteria e che mi servono solo 20 km/giorno, chissà.

Purtroppo una batteria completa fatta con queste celle costerebbe più di 1000 euro, che al momento non mi va di spendere (e se poi non funziona un tubo? Meglio spendere un quarto della cifra per sperimentare, poi si vedrà).