Jumping Jack Flash weblog

Batterie Li-NCM (Nickel-Cobalto-Manganese)

Posted in batterie by jumpjack on 2 marzo 2020

Una ricerca del 2014 illustra le diverse reazioni al calore dei diversi tipi di batterie NCM: quanto più è alta la percentuale di nickel, tanto più marcata è la fuga termica, ossia la pericolosità. La ricerca esamina gli effetti causati da un riscaldamento delle batterie dall’esterno.

Composizione chimica delle batterie NCA (Tesla):

Li Ni0.8 Co0.15 Al0.05  O2 (NCA)  (Nickel: 80% , Cobalto:  15%, Alluminio:  5%)

Composizione chimica delle batterie NMC/NCM ( LiNixMnyCozO2):
(NMC, x + y + z = 1)

Alcune frasi tratte dalla ricerca:

“It is well-known that a high nickel content contributes to a higher capacity at the expense of the safety characteristics, while high cobalt and manganese content improves the cycling and safety characteristics at the expense of the capacity”

ossia

“E’ risaputo che a un alto contenuto di nichel corrisponde un’alta capacità energetica a scapito della sicurezza, mentre un’alta concentrazione di cobalto e manganese aumenta il numero di cicli possibili e la sicurezza a scapito della capacità”.

 

“The more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release.”

ossia

“Maggiore è la percentuale di Nichel rispetto a Cobalto e Manganee, minore è più bassa la temperatura di transzione (ossia di decomposizione termica) e maggiore è la quanità di ossigeno rilasciato”

 

Ecco invece alcune immagini utili a capire la differenza tra le varie chimiche:

Comportamento termico delle varie chimiche NMC:

fuga termica

Confronto NMC/ LiFePO4:

confronto NCM/LFP

Tipi di elettrodo nelle batterie al litio:

tipi di elettrodi

Caratteristiche batterie NCM:

cicli di carica

Nelle ricerche la densità energetica viene sepre espressa in mAh/g o mAh/cm2 invece che in Wh/g, perchè così è legata solo all’elettrodo fatto di Li-NCM e non all’altro, che può essere fatto di vari altri materiali; inoltre il range di tensione in cui opera una cella può variare, ed essere ad esempio 3.0V-4.2V, o 2.8V-4.4V o altro; la correlazione Ah/g vs Wh/g non è quindi facile e immediata. Questa ricerca parla per esempio di NCM che raggiungo i 700 Wh/kg.

Confronto densità energetiche di varie chimiche (in realtà con valori invertiti, essendo qui kg/kWh invece che kWh/kg, quindi più lunga è la barra, meno energia contiene la batteria a parità di peso):

Densità energetica catodo NCM:

Un’importane differenza tra NCM e LiFePO4 (o LFP) è la curva di scarica: praticamente orizzontale nelle vecchie LFP, non permetteva di usare la tensione per determinare lo stato di carica, obbligando quindi a misurare la corrente dinamicamente e conteggiare gli Ah estratti; le NCM hanno invece una curva di scarica con una pendenza ben marcata, per cui il loro stato di carica può essere facilmente determinato staticamente, senza dover conoscere lo stato della batteria; c’è però lo svantaggio che la tensione complessiva di una batteria varia molto, obbligando a costruire un’elettronica che accetti un range di tensione di ingresso motlo ampio.

Da questo grafico (5) vediamo come una batteria da 400V (tipico voltaggio di un’auto), cioè di 100 celle in serie, abbia una tensione che oscilla tra 350V e 420V, con una differenza di 70V, contro i 5-10V di differenza tra carica e scarica per una LFP:

Le NCM hanno inoltre una mobilità elettronica 1000 volte più alta delle LFP, che si traduce in un’intensità di carica/scarica molto maggiore, ossia in una potenza maggiore disponibile per il motore, e una maggiore velocità di ricarica.

 

Il numero di cicli dopo cui la capacità di una batteria scende sotto l’80% è molto variabile da una chimica NCM all’altra, e anche da una fabbrica all’altra della stessa chimica, tanto che alcune NCM risultano migliori delle LFP, altre peggiori

 

Un nuovo tipo di NCM è allo studio, con catodo”ibrido NCA-NCM90″, in cui nuclei di NCA sono incapsulati in NCMA, col risultato di aumentare sia la capacità che la stabilità termica (ossia la sicurezza intrinseca); l’aumento di concentrazione di Nickel, infatti, riduce la stabilità termica, e quindi la sicurezza, delle batterie (1), (8) :

  • Nuclei: Li[Ni0.934Co0.043Al0.015]O2 (NCA 93% – 4.3% – 1.5%)
  • Rivestimento: [Ni0.844Co0.061Mn0.080Al0.015]O2 (NCMA 84% – 6% – 8% – 1.5%)
  • Risultante: Li[Ni0.886Co0.049Mn0.050Al0.015]O2 (NCMA 88% – 4.9% – 5% – 1.5%)

 

Inoltre, potendo lavorare fino a tensioni maggiori delle “normali” NCM, (4.3V o addirittura 4.5 invece dei canonici 4.16), permettono di araggiungere capacità superiori:

  • 225 mAh/g a 4.3 V
  • 236 mAh/g a 4.5 V

Per confronto: NCM 622: 180 mAh/g

Questo schema, tratta da (6),  mostra le densità dei vari anodi e catodi; l’anodo oggi come oggi è perlopiù fatto di grafite, ma esistono altre possibilità. Il catodo è invece sempre fatto di composti del litio:

capacita batterie al litio (mAh/g)

capacita batterie al litio (mAh/g)

Tale ricerca è particolarmente interssante perchè racconta la storia delle batterie al litio dagli anni ’70 ad oggi.

Nelle NCM tradizionali non ibride, più aumenta la concentrazione di Nickel, meno cicli dura la batteria (7), ossia aumenta il “capacity fading” (degradazione della capacità):

degradazione capacità NCM


Fonti:

  1. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2  Cathode Materials Studied by  ombined In Situ Time-Resolved XRD  and Mass Spectroscopy , Seong-Min Bak, 2014, ref. BNL-107164-2014-JA
  2. What do we know about next-generation NMC 811 cathode?
  3. Nuove batterie NCM90 (NCM 9/.5/.5): https://pushevs.com/2019/07/11/ncm-90-successor-of-ncm-811-battery-cells/
  4. Cycling behavior of NCM523//Graphite lithium-ion cells in the 3-4.4 V Range – Diagnostic studies of Full Cells and Harvested Electrodes  – James A. Gilbert
  5. THIS IS WHY NCM IS THE PREFERABLE CATHODE MATERIAL FOR LI-ION BATTERIES, 2019
  6. Degradation Mechanisms of High-Energy Electrode
    Materials for Lithium-Ion Batteries – Roland Jung, 2018
  7. Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? – Hoon-Hee Ryu, 2018
  8. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, Noh, H.-J., 2013
  9.  Prestazioni NCM prodotte dalla Targray:

NMC Powder Cathode for Batteries (LiNiMnCoO2)

 

Tipi di catodo:

Tagged with: , , , ,

Batterie al litio a stato solido

Posted in auto elettriche, batterie by jumpjack on 27 agosto 2018

Ultimamente si sente parecchio parlare di batterie al litio a stato solido, e di svariati milioni di dollari investiti da varie aziende sulla loro ricerca e sviluppo; queste batterie occuperebbero infatti metà spazio (e metà peso) di quelle attuali, scatenando quindi una vera rivoluzione nella mobilità elettrica, quanto lo ha fatto l’introduzione delle Li-NCM da 250 Wh/kg al posto delle LiFePO4 da 100 Wh/kg.

Ecco un interessante grafico riassuntivo delle capacità gravimetriche e volumetriche di varie tecnologie  attualmente esistenti (a livello di cella; dentro una batteria le densità diminuiscono per la presenza di separatori, condizionatori, elettronica,…):

Fonte: https://www.researchgate.net/publication/320425585

Ecco una ricerca recentissima (2018) che descrive molto tecnicamente come sono fatte e funzionano (o funzioneranno) le  batterie al litio a elettrolita solido (Solid State Electrolite – SSE, o Solid State Battery – SSB), di cui esistono molteplici varianti, ma per ora tutte soltanto a livello di laboratorio: A Brief Review of Current Lithium Ion Battery Technology and Potential Solid State Battery Technologies – Andrew Ulvestad

Le uniche fuori dal laboratorio sono installate sulle auto elettriche Bollorè, ma hanno la densità gravimetrica delle LiFePO4 (100 Wh/kg) e devono lavorare a 80 °C.

La ricerca non parla però della nuova tecnologia inventata dal prof. Goodenough, inventore delle batterie al litio 30 anni fa, che ora (nel 2017), alla tenera età di 94 anni, le ha “perfezionate” inventando quelle a elettrolita solido vetroso.

In genere se una tecnologia per le batterie funziona, ci vuole una decina d’anni perchè arrivi sul mercato delle auto elettriche, forse qualcuno in meno perchè arrivi sui modellini telecomandati, più sacrificabili, e sui cellulari, perchè tanto la gente li comprerebbe anche se funzionassero a nitroglicerina…

Quindi non resta che aspettare, e intanto ringraziare questo simpatico vecchietto se la rivoluzione della mobilità elettrica è diventata possibile.

Prof. Goodenough

 

 

Tensioni di massima e minima carica batterie al litio

Posted in batterie by jumpjack on 28 luglio 2018

Ho trovato in rete dell’insolito e inaspettato materiale che mi ha permesso di aggiornare un vecchio post sulle tensioni tipiche di cella; “insolito e inaspettato” perchè il materiale è frutto di esperimenti dannosi e pericolosi effettuati su celle al litio, caricandole e scaricandole oltre le soglie-limite. Soglie che peraltro sono molto discusse in rete, e apparentemente soggettive.

Questi esperimenti oltre-limite sembrano finalmente gettare un po’ di luce sulla faccenda.

La fonte dei grafici originale è https://www.powerstream.com/lithium-phosphate-charge-voltage.htm , ma non il linko il sito perchè contiene informazioni pericolose.

LiFePO4

Nel primo grafico (LiFePO4) si vede che caricare una cella a 3.1V (curva in basso a sinistra) comporta un incremento minimo di energia (4-5%), quindi si può supporre che 3.0V sia ragionevolmente la tensione minima oltre la quale è inutile  scendere, per non danneggiare la cella; analogamente, caricando oltre i 4.16V “tipici”, si ha un incremento minimo di carica, ma si stressa la cella riducendone la vita utile.

Per una cella LiFePO4, quindi, l’intervallo di sicurezza (Safe Operating Area) può essere individuato fra 3.0 e 3.25V.

 

li-ion/LiPO/LiCoO2/NCM/NMC

Da osservazioni analoghe sul secondo grafico si può dedurre che per le li-ion/LiPO/LiCoO2/NCM l’intervallo di sicurezza (Safe Operating Area) può essere individuato fra 3.4V e 4.16V; notare che questo secondo tipo di cella è molto più sensibile alle tensioni errate, che possono portare a incendi ed esplosioni.

In caso di carico

Tutti questi valori sono validi in assenza di carico; con un carico applicato, bisogna tener conto che più alta è la corrente erogata, maggiore è l’abbassamento di tensione, che quindi può scendere sotto la soglia di sicurezza anche se a riposo la tensione ben più alta; utilizzare quindi la cella solo finchè a riposo si trova nella SOA garantisce che, anche sotto carico, la tensione non scenda sotto i livelli critici.

 

Tabella delle tensioni

Segue una tabella coi valori dedotti, oltre che dai suddetti grafici, anche da altre fonti:

Tensione
danneggiamento
Tensione
minima utile
Tensione nominale Tensione
batteria
carica
Tensione
di ricarica
Li-Ion/LiPo 3,0 3,4 3,6 4,16 4,20
NMC/NCM 3,0 3,4 3,7 4,16 4,20
LiFePO4 2,8 3,0 3,3 3,6 3,65

Da notare che:

  • li-ion/LiPO e NMC/NCM usano chimica simile a base di cobalto, quindi hanno all’incirca le stesse tensioni, ma le NCM/NMC sono intrinsecamente più sicure perchè vanno più difficilmente in fuga termica (incendio o esplosione) in caso di abuso, rispetto alle LiPO.
  • La tensione di ricarica NON coincide con la tensione di batteria carica: dopo la fine della carica, infatti, la tensione si abbassa di qualche puto decimale anche senza essere usata, assestandosi sulla tensione nominale.

Diario elettrico Ecojumbo 5000 – 10/2/2018: mezzi elettrici indistruttibili!!!

Posted in batterie, scooter elettrici by jumpjack on 10 febbraio 2018

Sono passati più di 13 mesi da quando ho parcheggiato per un’ultima volta lo scooter dopo aver sfasciato il cerchione posteriore in una buca:

Il cerchione è stato aggiustato a suon di martellate e sfiammate, ed è tornato apparentemente come nuovo, almeno meccanicamente…. ma elettronicamente? I magneti non reagiscono bene a calore e martellate…

Finora non l’avevo mai provato: dal momento che le strade della mia zona sono diventate impraticabili per via delle buche, ho solo rimontato la ruota ma non ho mai ricollegato i fili.

Oggi, con la prospettiva di vendere, forse, lo scooter, in vista dell’acquisto della minicar elettrica GreenGo Icaro, ho  deciso di mettermi lì con calma a scartabellare tra vecchi appunti, vecchie foto e ragnatele di fili sparsi…

Alla fine sono riuscito a ricollegare tutto.

Ho acceso il quadro, ho girato la manopola, il quadro si è acceso (è già un mezzo miracolo, dopo 14 mesi di non utilizzo delle batterie!), è scattato il relè collegato alla resistenza di precarico, ho girato la manopola dell’acceleratore e….

…niente.

…azz, vuoi vedere che  fiamma e martellate ha davvero sconquassato il motore…?

Ah no… è solo che ho ricollegato “solo” i 14 fili di controllo della centralina… ma non ho ricollegato i 3 grossi cavi del motore!  Doh!

Riprovo.

Spengo.

Ricollego.

Giro la manopola eh…

WOW!

Il motore gira che è un piacere! Nessun danno apparente derivante da martellate e sfiammate! Almeno, sul cavalletto. Poi bisognerebbe vedere in strada…. però ho lasciato scadere l’assicurazione, quindi si vedrà.

Passiamo alle batterie:

 

No dico, ma vi rendete conto? La batteria è stata ferma 13 mesi, per di più senza BMS perchè si era bruciato e lo dovevo cambiare… e lo sbilanciamento massimo tra celle è di 4 mV!!!! Ed è ancora praticamente carica!!! (la piena carica è a 3,3V/cella).

Per la cronaca, si tratta delle batterie estraibili a LiFePO4 da 60V/20Ah della EcoItalMotor .

Quello che invece ha resistito molto peggio, invece, è la meccanica, sotto sole, ghiaccio, vento, pioggia:

La vernice si è tutta sgarrupata, la plastica del contachilometri è diventata quasi completamente opaca…

Sul vecchio Zem Star 45 dopo 3 anni sotto le intemperie dovetti sostituire la plastica del contakm  (fabbricandola a mano su misura da un foglio di plexiglass), qui mi sa che dovrò fare lo stesso, se deciderò di tornare in circolazione. Ma ammetto che aver visto ripartire il motore mi ha fatto venire un po’ di nostalgia delle mie scorribande elettriche a due ruote! Quindi, almeno per ora, non si vende. Però devo trovare un posto dove mettere lo scooter per fare spazio alla icaro…

 

Altri rivenditori di batterie al litio in Europa

Posted in batterie, scooter elettrici by jumpjack on 30 settembre 2016
Tagged with: , , ,

“Beccato” il costruttore cinese delle batterie Ecoitalmotor! :-)

Posted in batterie, scooter elettrici by jumpjack on 24 settembre 2016

Gli scooter EcoItalMotor sono equipaggiati con batterie estraibili dotate di manico telescopico e rotelle:

Batterie ZEM ECOITALMOTOR a valigetta

 

Ho trovato il produttore cinese, “Hecobattery”:

http://www.hecobattery.com/china-60v_electric_motorcycle_lithium_battery_20ah_lifepo4_battery_pack-1303533.html

Il modello si chiama “HC-MT-60F20-MA”.

Le dimensioni sono:

ecoitalmotor-zem-dimensioni-batteria

  • Standard: 8 x 26 x 48 cm (con manico e rotelle)
  • Statica: 8 x 26 x 43  cm  (senza rotelle)
  • Monoblocco: 8 x 26 x 37,5 cm (senza manico e senza rotelle; volume esterno: 7,8 litri)

Viene data come da 20Ah, però all’interno della mia ci sono dei moduli marcati HC-13A8f5, che sembrerebbero invece essere celle da 18 Ah:

ecoitalmotor-001

High Safety 18Ah LiFePO4 Battery Cell , 3.2V Lithium-Ion Polymer Battery 13A8F5

Si tratta di celle a sacchetto al LiFePO4 di dimensioni 13*108*155 mm, raggruppate in 4 blocchi di circa 108*158 mm che devono stare in un involucro spesso 80mm all’esterno, quindi forse 75 mm all’interno, che significherebbe 6 celle per ogni blocco, per un totale quindi di 24 celle; per una batteria LiFePO4 da 60V bastano 20 celle in serie (in realtà sono quindi 64V: 3.2*20), quindi probabilmente ci sono invece CINQUE celle per ogni blocco (non mi va di smontare tutto per contarle…).

 

ecoitalmotor-18f-001cicli

3500 cicli a 1C

 

 

ecoitalmotor-18f-001capa

100% della capacità (18Ah) a 1C, 105% (19Ah) a 0.2C.

 

 

 

ecoitalmotor-18f-001temp

90% di capacità (16Ah) a 0°C , 75% (13.5Ah) a -10°C.

 

Diario elettrico Ecojumbo 5000 – il voltmetro

Posted in Diario elettrico Ecojumbo 5000, scooter elettrici by jumpjack on 1 aprile 2016

Ho finalmente trovato il tempo di verificare i voltaggi del voltmetro di bordo.

Ha 4 tacche, ognuna separata da 1.5 V; la più “alta” (lancetta verso sinistra) corrisponde a 61V; alla più bassa non arrivo mai, specie ora con lo scooter depotenziato per preservare le batterie, ma ovviamente basta fare un po’ di conti.

Complessivamente i valori indicati dal voltmetro sono:

  1.  61.0V (Full)
  2. 59.5V
  3. 58.0V
  4. 56.5 V (Empty)

L’Ecojumbo nasce con batterie al piombo, che hanno queste tensioni (5 batterie in serie):

  • 64.8V   Full
  • 58.55V 50%
  • 56.05V 30% (warning, non scendere sotto questo livello!)
  • 52.5V   0% (danneggiamento)

Quindi con batteria al piombo completamente carica, il voltmetro va oltre il fondo scala (la lancetta ha ancora un po’ di spazio…). In compenso, la lancetta “empty” indica un SoC di 30%, che è meglio non superare se non si vuole danneggiare la batteria.

 

Per una batteria al litio  LiFePO4 con 20 celle, le tensioni da considerare sono:

  • 66V Full (3,3/cella)
  • 64V 50% (3,2/cella)
  • 40V Empty (danneggiamento) (2,0V/cella)

Bisogna però prestare attenzione alla curva di scarica di una LiFePO4, che non è una semplice riga dritta come per le piombo:

2.0 è il voltaggio minimo raggiungibile senza danneggiare la batteria… ma non ha molto senso raggiungerlo, perchè tra 2,5V e 2,0V la diminuzione di capacità è intorno al 3-4% del totale, e arriva al massimo a un 5-6% per tensioni di 2,8V; visto che le batterie soffrono se sovrascaricate, è più utile e prudente non scendere sotto i 2,7V (c’è chi dice 2,8, chi 2,6,…).

Meglio quindi usare questi riferimenti di tensione per una batteria al litio LiFePO4 sull’Ecojumbo 5000:

  • 66V Full (3,3/cella)
  • 64V 50% (3,2/cella)
  • 62V 20% (3,1/cella)
  • 54V Empty (2,7/cella)
  • 40V (danneggiamento) (2,0/cella)

Riporto di nuovo i valori del voltmetro, stavolta “estesi”:

  • 62.5V (fondo scala)
  1.  61.0V (Full) – 3.05/cella
  2. 59.5V – 2.975/cella
  3. 58.0V – 2.9/cella
  4. 56.5 V (Empty) – 2.825/cella
  5. 55 (fuori scala in basso) – 2.75/cella

Confrontando i valori si nota che il voltmetro del mio Ecojumbo non è molto utile per valutare lo stato di carica della batteria (ma è un “male comune” di tutte le batterie al litio: un voltmetro non basta!); però è utile per verificare che la batteria non venga sottoposta a stress eccessivo: anche sotto carico, è meglio che la tensione non scenda sotto la prima tacca a destra (indicata con 4 nell’elenco qui sora), o addirittura sotto all’inizio della scala, perchè significherebbe che si sta estraendo troppa corrente dalla batteria (anche se quelli sopra non sono esattamente i datasheet delle batterie che sto usando io).

In compenso, se sotto carico la batteria fa arrivare la lancetta fino alla tacca 3 o 4, vuol  dire, sì, che c’è un forte assorbimento sulla mia batteria da 36Ah (forse 2 o 3C), ma che se si mantiene per solo pochi secondi non c’è problema.

Normalmente io dopo 20km di viaggio sto a 64.3V –  64.5V.

Dati tecnici batterie ecoitalmotor

Posted in Uncategorized by jumpjack on 23 marzo 2016

Mi capita spesso di andare a cercare nel blog i dati tecnici delle mie batterie,ma sono tutti sparpagliati in 10000 post, facciamo un po’ di ordine:

Vecchie Zem, Li-ion LiCoO2
Dimensioni:
* 37,5 x 8 x 26,5 cm senza manico e rotelle (8 dm3)
* 48 x 8 x 26,5 cm con manico e rotelle
Volume: 8 litri
Peso: 10kg
Capacità: 24Ah/1440Wh
Vita: 300 cicli
Densità gravimetrica: 144Wh/kg
Densità volumetrica: 181 Wh/L

Nuove ecoitalmotor LiFePO4:
Dimensioni:
* 37,5 x 8 x 26,5 cm senza manico e rotelle (8 dm3)
* 48 x 8 x 26,5 cm con manico e rotelle
Volume: 8 litri
Peso: ?
Capacità: 18Ah/1080Wh
Vita: 1000 cicli
Densità gravimetrica: ? Wh/kg
Densità volumetrica: 135 Wh/L

Le batterie al piombo: efficienza e tipi

Posted in ambiente, auto elettriche, batterie, scooter elettrici by jumpjack on 21 novembre 2015

Ottima e completa disamina dell’effetto Peukert nelle batterie al piombo, a causa del quale hanno efficienza di appena il 60% sugli scooter elettrici, perchè scaricate a 1C o più:

http://bdbatteries.com/peukert.php

Una batteria al piombo “da 100Ah” viene etichettata come “da 100Ah” estraendone una corrente molto piccola, tale da farla scaricare in 20 ore, e pari a 5A; se la corrente viene aumentata a 10A, la batteria non si scaricherà in 10 ore ma, ad esempio, in 8; estraendo 20A non si scaricherà in 5 ore ma magari in 3, e così via, secondo un grafico di questo tipo (che varia un po’ da una batteria all’altra secondo marca, modello e tecnologia):

Si tratta in particolare del grafico per una batteria da 36Ah: si osserva che scaricata a 36A/1C dura mezz’ora, quindi di fatto a 1C fornisce 18Ah, ossia ha un’efficienza del 50%.

 

————–

 

Quest’altro link illustra in dettaglio le tecnologie usate per costruire le batteria al piombo:

  • Flooded Valve Regulated Lead Acid Batteries (VRLA) – da evitare su scooter elettrici, devono essere rabboccate con acqua distillata
  • Gelled Electrolyte Lead Acid Battery (GEL) – molto usate sugli scooter elettrici
  • Absorbed Glass Mat Battery Construction (AGM) – le più efficienti e durature… e costose

—-

Qui invece ho scoperto un effetto che non conoscevo: la sotto-ricarica delle batterie al piombo.

Se nel caricare una batteria al piombo non si arriva a riempirla al 100%, il solfato di piombo (PbSO4) che si era formato durante lo scaricamento rimane in parte depositato sugli elettrodi invece di ritrasformarsi in Piombo (Pb) e acido solforico (H2SO4); riscaricando la batteria e poi ripetendo sotto-ricariche più volte, il solfato che non viene ri-disciolto finisce per indurirsi, cosicchè quando alla fine si prova a ricaricare la batteria al 100%, il solfato non si scioglie più, quindi di fatto non è più possibile rimettere nella batteria il 100% della carica: si ha quindi una perdita di capacità.

Col tempo una perdita di capacità si avrebbe comunque, ma per altri motivi; questo è un fattore di invecchiamento in più, che può essere evitato con un uso corretto.

———–

Tutto sui metodi di ricarica delle batterie al piombo

———–

Altro effetto mai sentito prima: “coup-de-fouet”  (“colpo di frusta”) [1]

E’ un improvviso, lieve e breve ma inaspettato calo di tensione durante la scarica; il fenomeno si aggrava con gli anni, e si moltiplica su batterie a tensioni più alte di 12V, e può far “credere” all’elettronica che la batteria sia ormai scarica, anche se poco dopo la tensione risale al livello “giusto”.

Non si conoscono le cause del fenomeno.

(1) – IMPORTANT CONSIDERATIONS WHEN REDUCING THE RUN-TIMES
OF VRLA UPS BATTERIES – Mike Nispel

Diario elettrico Ecojumbo 5000: 3/10/2015, primi 200 km con l’Ecojumbo 1500

Posted in Diario elettrico Ecojumbo 5000, scooter elettrici by jumpjack on 3 ottobre 2015

Prime due settimane e 200 km con l’Ecojumbo 1500 provvisorio…

Non riscontro particolari problemi; solo in partenza il motore fa rumori un po’ strani, come se facesse fatica, ma anche se accelera poco; ma basta iniziare a muoversi a 2 km/h e il rumore cessa, boh?

Mi si è staccato il connettore Anderson di uno dei diodi di protezione delle batterie; siccome erano le 7:30 di mattina non avevo tempo per mettermi a saldarlo, così ho eliminato del tutto il diodo, che per fortuna non era più collegato alla bell’e meglio ma dotato di due anderson (uno per la batteria e uno per lo scooter).

Però, nel farlo… ho dimenticato di attaccare l’ALTRA batteria… così ho fatto 20 km con una (povera) batteria sola! In effetti vedevo il voltmetro che, stranamente, scendeva di 1 mm, mentre invece con l’EJ1500 in genere non si schioda dal fondo scala, ma pensavo non si fosse caricata la batteria difettosa… Vabbè.

Poca cosa.

Intanto, sto continuando a cercare una nuova centalina, ma è dura…