Jumping Jack Flash weblog

Diario elettrico Ecojumbo 5000 – 15 marzo 2016: messa a punto centralina

Posted in Diario elettrico Ecojumbo 5000 by jumpjack on 17 marzo 2016

Passata la prima settimana di prove su strada, ho deciso di mettere mano alla centralina per mettere un po’ a punto le prestazioni: al momento, con questi settaggi, partendo da fermo con l’acceleratore a tavoletta vengo quasi disarcionato dallo scooter e la tensione di batteria scende paurosamente, quindi non è decisamente l’ideale… La velocità massima è di 82 km/h, e l’acceleratore, quand’è al minimo,non sempre viene letto correttamente dalla centralina. Questo perchè  applicando 3,75V , a riposo ottengo 0,88V (23,4%) e al massimo 2,95V (78,6%), mentre la centralina è impostata su  20% di minimo e 80% di massimo, valori troppo risicati (scelti infatti del tutto a caso…):

Configurazione acceleratore Ecojumbo su centralina Kelly KEB72801

Acceleratore Ecojumbo su centralina Kelly KEB72801 – configurazione 1 (prima del 15/3/2016) [schermata 1]

Ho scelto quindi questa nuova configurazione:

kelly-001-dopo2

L’acceleratore viene cioè “letto” come “zero” solo se è minore del 25%; la cosa è importante perchè c’è un’altra opzione sulla centralina che impedisce completamente di partire se all’accensione della centralina stessa l’acceleratore non risulta a zero (per motivi di sicurezza), dando l’errore (2,4) (schermata 2):

kelly-002-prima

Sicurezza acceleratore su centralina Kelly KEB 72801 – Configurazione 1 (pre 16/3/2016)  [schermata 2]

E’ l’opzione “Power on High Pedal disable” (che si leggerebbe meglio se scritta “Power-on high-pedal disable”, o meglio ancora “Disable if high-pedal detected at power-on”), perchè nella centralina l’acceleratore è chiamato “pedal” oltre che “throttle”.

Già che ci siamo, spieghiamo anche la seconda opzione, “Releasing Brake High Pedal Disable”: significa che se, quando si rilascia il freno, l’acceleratore non è a zero, il motore non parte.( Non so se dipende da questo il fatto che tirando il freno NON viene escluso il motore MA viene escluso se tiro indietro il pulsante sopra all’acceleratore: pensavo fossero sulla stessa linea di sicurezza, ma evidentemente non è così… o forse dànno due diversi livelli di tensione, non so… dovrò fare delle misure. )

“Si dice”, infatti, che su uno scooter elettrico sia obbligatorio disabilitare il motore a freni tirati. Non sono però mai riuscito a trovare la normativa che impone quest’obbligo. Forse dovrei cercare su una generica/fantomatica normativa sugli azionamenti elettrici in continua… ma io che ne so?!?

In questa stessa schermata, che riporto di nuovo per comodità per chi arriva a questo punto della pagina solo col FIND (CTRL+F)….,  si vede la tensione di “taglio sottosoglia” (Low Voltage Cutoff – LVC): in via estremamente prudenziale l’avevo inizialmente impostata a 60V:

kelly-002-prima

Tensione di sottosoglia per centralina Kelly KEB72801 – configurazione 1 [schermata 2]

La nota dice che le tensioni effettive di stacco e riattacco sono 60*1,1 (cioè 60 +10%) e 60*0,05 (cioè 60 +5%), cioè 66  e 63V; in questi giorni, tornando a casa dopo 20 km percorsi, era sui 64,5 , e ovviamente scendeva anche di più durante le accelerazioni. Però la nota mi sembra anche confusionaria: dice che la corrente viene tolta a 66V e riattaccata a 63… ma non ha senso! Semmai dovrebbe essere tolta a 63 e, quando poi la tensione risale a 66 perchè si è rilasciato l’acceleratore, essere riattaccata! Invece a me si staccava “a tensione indefinita dopo un tempo indefinito” (a volte sono stato anche a 58 per qualche secondo, e non ha staccato, mentre altre volte, in corsa, quando non riuscivo a leggere la tensione, staccava…), ma si è sempre riattaccata, benchè i 66V la batteria li raggiunga solo quando è completamente piena…

Mah. La morale della favola è che devo installare il voltmetro sul manubrio invece che sul “serbatoio”, dove non riesco a leggerlo in movimento quando ho il grembiule antivento… :-/

Comunque sia, ora ho impostato la soglia di LVC a 53V, che significa  55.65V e 58.3V:

Tensione di sottosoglia per centralina Kelly KEB72801 - configurazione 2 [schermata 2]

Tensione di sottosoglia per centralina Kelly KEB72801 – configurazione 2 [schermata 2]

 55.65V significa 2.78V/cella, mentre 58.3V significa 2.915V/cella (rispetto agli esagerati 3V di prima…). “Si dice”  che le LiFePO4 possano arrivare fino a 2.5V senza danneggiarsi, ma non vedo il motivo di stressarle tanto. Comunque, vedrò quanta autonomia riesco a raggiungere così. Sono anche finalmente riuscire a trovare una pinza amperometrica da 1000A DC e con uscita in tensione, quindi potrò finalmente tarare il powermeter comprato anni fa e mai utilizzato perchè starato.

La tensione di soprasoglia l’ho impostata a 74V rispetto ai 73V di tensione massima di ricarica, ma in realtà quando le batterie sono in ricarica sono staccate dallo scooter, quindi al momento questo valore è irrilevante. Devo ancora studiare un modo per ricaricare le batterie senza staccarle dallo scooter, perchè hanno un unico connettore sia per scarica che per ricarica, e devo capire se andando a ricaricarle mentre sono collegate vado anche a buttare corrente nelle varie utenze dello scooter  o no, e se devo aggiungere un interruttore che dovrei staccare ogni volta che ricarico… boh… Sono abituato a uno scooter con batterie estraibili, che dovevo per forza di cose ogni volta staccare dallo scooter pe ricaricare; ora che sono fisse nello scooter non so bene come gestirle…

Ma torniamo ora alla schermata 1, perchè è qui che si impostano, oltre alle tensioni dell’acceleratore, anche le correnti del motore e della batteria; questa era la prima mappatura:

Configurazione acceleratore Ecojumbo su centralina Kelly KEB72801

Configurazione acceleratore Ecojumbo su centralina Kelly KEB72801 – configurazione 1

Inizialmente avevo cioè impostato che la centralina prelevasse dalle batterie il 50% della corrente massima (50% di 140A, cioè 70A/4.6kW), e inviasse al motore l’80% (112A/7.4kW); però tirare fuori 70A da una batteria composta da due batterie da 18Ah significa estrarre da ciascuna 35A/2C, che è un po’ tanto; nella settimana di prove ho appurato che è anche inutile, e pure un po’ pericoloso, perchè così lo scooter ha un’accelerazione sconsiderata, al punto che se parto con l’acceleratore a tavoletta rischio di essere disarcionato!!! A me basta arrivare da 0 a 50 in 3 o 4  secondi, non in mezzo secondo! Quindi nella nuova mappatura ho impostato la corrente a 30% (42A/2.8kw, cioè poco più di 1C a batteria), molto più ragionevole, e 70% (98A/6.5kW) al motore:

 

kelly-001-dopo

Corrente di batteria – configurazione 2: 30% di 140A(=42A, 21A/batteria,  1.3C, 2.7 kW totali, max 70 km/h)

Infatti adesso il voltmetro dell’Ecojumbo non scende più di 2.5 tacche  su 3 quando accelero a fondo, ma solo di mezza tacca su 3 (non ho ancora verificato a quali valori effettivi corrisponde), ma l’accelerazione in partenza è ancora ottima, permettendomi di liberare gli incroci con la dovuta prontezza.

Come si nota, la corrente che va al motore è regolabile indipendentemente da quella estratta dalla batteria: questa “magia” (realizzata, credo,  da un DC/DC converter, che “trasforma” la tensione in corrente) è fondamentale per batterie sottodimensionate come le mie, perchè così posso preservarle senza dover rinunciare alle ottime prestazioni dell’ecojumbo. La conversione da tensione a corrente, infatti, fa sì che i “miseri” 42A/2.7kW prelevati dalla batteria diventino 98A quando vanno al motore; immagino che questo significhi che al motore non arrivano più i 66V della batteria, ma qualcosa in meno; ma tanto la tensione massima stabilisce solo qual è la velocità massima del motore… che ovviamente in partenza è minima, quindi in partenza serve poca tensione; serve invece molta corrente, perchè dalla corrente dipende l’accelerazione; si tratta quindi di “ridistribuire” opportunamente tra corrente e tensione la poca potenza disponibile proveniente dalle batterie: con 42A e 66V si hanno 2,8 kW; per avere 2,5 kW a 98A significa che la tensione scende a 28V, cioè che lo scooter può arrivare al massimo a 30-35 km/h. Ma stiamo per l’appunto parlando di “partenza” , “corrente di picco” e “accelerazione di picco”, quindi non è un problema: una volta partito lo scooter, la corrente cala drasticamente, per andare pian piano a risalire man mano che aumenta la velocità.

In teoria, per arrivare a 90 km/h dovrebbero servire oltre 6000W (anche se non ho dati certi su Frontal Area e Cx dello scooter, potrebbero essere 0.8 come 0.7 o 0.9…), nel qual caso con 2.8 kW potrei arrivare al massimo a 70 km/h…. che per l’appunto è la velocità che ho registrato nei test! Un po’ bassina, vorrei arrivare almeno a 80, ma sempre senza stressare le batterie; però secondo quella tabella servono 4.9 kW…. non so se ci riesco, prendendo dalla batteria solo 2.7kW! Lo vedo un po’ impossibile! Mi sa che dovrò per forza aspettare di installare una TERZA batteria per arrivare almeno a 54Ah, che significherebbe avere almeno 60A/3.9 kW continui disponibili. Solo che avevo intenzione di comprarla dopo aver fatto abbastanza km elettrici da equivalere i suoi 800 euro in benzina, ma l’acquisto della centralina nova mi è già costato… 6000 km di benzina! Dovrò farmi un po’ di conti.

Tutti gli altri settaggi, per ora, non li ho toccati; il regen non lo uso perchè sarebbe troppo complicato gestirlo con due batterie in parallelo.

kelly-003-prima kelly-004-prima kelly-005-prima

Diario elettrico Ecojumbo 5000 – 20/9/2015: primo viaggio dell’Ecojumbo 1500

Posted in scooter elettrici by jumpjack on 21 settembre 2015

Dopo innumereveoli tentativi e combinazioni, anche più dei 36 previsti a causa di varie sviste ed omissioni, alla fine sono riuscito a trovare la combinazione giusta di sensori di hall e cavi di potenza; per l’esattezza, ne ho trovate tre (come previsto vedendo il foglio precompilato di un altro motore); in tutti e tre i casi non riesco ad avere corrente assorbita nulla con motore a vuoto, come invece dovrebbe essere, ma non riesco a scendere sotto gli 11A; che comunque sono molto meno dei 30-40 a vuoto in caso di collegamento a fasi sbagliate!

E comunque, la combinazione trovata è giusta: la centralina scalda comunque, ma non scotta nemmeno dopo una salita di un chilometro, e i cavi sono appena tiepidi, mentre con la combinazione precedente, errata, diventava tutto così bollente da non poter essere toccato dopo soli 500 metri in pianura!

Il collaudo è stato il viaggio fino al luogo del raduno, distante 13 km, percorsi senza problemi di surriscaldamento.

Ovviamente, con una centralina da 1500 W montata su uno scooter da 200 kg invece che 100, anche avere un motore da 5000W non serve a molto: la potenza massima sviluppata è comunque 1500W. E’ però interessante notare che la velocità che riesco a raggiungere è la stessa che raggiungevo con l’altro scooter, lo Zem Star 45: massimo 55 km/h, misurati dal “radar stradale”. Questo significa che l‘area frontale dei due scooter e l’attrito delle ruote, combinati insieme, sono ben poco diversi nei due casi; quello che influisce sulla velocità massima, infatti, è solo l’attrito (di aria e ruote).

Diverso il discorso per l’accelerazione e le salite: qui quello che conta è il rapporto potenza/peso... che adesso è drammatico: sullo Zem avevo 1500W per 100 kg, quindi 15W/kg, mentre ora ho solo 7,5W/kg (contro i 25 dell’Ecojumbo con centralina giusta); basti considerare che 10W/kg è la potenza delle vecchie minicar al piombo come la Birò o la Startlab Open Street, “note” per i tempi biblici necessari per raggiungere i 50 km/h (qualcosa come trenta secondi o giù di lì, contro i 6 di una moderna minicar elettrica al litio come Twizy o Icaro, che hanno 30 W/kg).

E infatti anche il mio “Ecojumbo 1500” ha tempi biblici per prendere velocità; non li ho ancora misurati, ma partire ad un incrocio adesso è diventato imbarazzante…. Forse dovrei attivare il limitatore di velocità della centralina, che però fornisce uno sprint molto pià alto in partenza: sulla “versione 2.0” dello Zem infatti avevo collegato il limitatore a un pulsante che faceva da “turbo“: lo innestavo quando dovevo fare partenze impegnative o salite gravose, poi lo troglievo per poter superare i 45 km/h. Mettendolo anche sull’Ecojumbo, però, non vorrei rischiare di fondere la centralina… che chissà che tipo di protezioni ha: corrente? temperatura? niente? vai a sapere!

Comunque ovviamente la centralina da 1500 W è una soluzione temporanea: mi serviva per capire se il motore funziona ancora o no. Quindi ora posso passare a comprare la centralina… e a progettare un sistema di raffreddamento! Infatti in questi giorni sto studiando la trasmissione del calore e la dissipazione, e mi pare di capire che attraverso le pareti di plastica di una scatola chiusa di 30x30x20 cm (lo spazio disponibile per la centralina; fore meno) si possono dissipare al massimo 40W;  supponendo che la centralina originale dell’Ecojumbo 5000 abbia un’efficienza del 95% (molto ottimisticamente), significa che dei 5000W che la attraversano, 250W si dissipano in calore! E se non riescono ad uscire dalla pancia dello scooter, che riesce al massimo a lasciar passare 40W (ma forse meno, perchè le plastiche sono doppie e triple…), significa che lentamente ma inesorabilmente la centralina si cuoce piano piano con gli anni….

Può darsi che d’inverno, quando la temperatura esterna è di 5°C, lo scambio termico sia sufficiente (96W), ma i 40°C di quest’estate non sono certo stati un toccasana per la centralina; quindi, la prossima o la monterò all’esterno, o la doterò di un sistema di ventilazione forzata; che peraltro potrebbe avere un duplice scopo: raffreddare la centralina durante il moto, e raffreddare i caricabatterie durante la sosta per la ricarica; due caricabatterie da 60V/4A e 60V/ 5A dissipano  27W complessivi se hanno efficienza del 95%, 54W se del 90% e 81W se dell’85%. Non ho idea di che efficienza abbiano realmente, ma toccandoli con mano so che scaldano parecchio, quasi da scottare, quindi sicuramente una ventilazione forzata è necessaria per tenerli nel sottosella chiuso.

Alla fine della storia, mi sa che doterò il mio Ecojumbo… di un tubo di scarico! 🙂 Ma un tubo di scarico molto particolare, che emette solo aria, la stessa che c’è fuori, solo un po’ più calda. Magari tutti gli scooter avessero un tubo di scarico così! 🙂

 

 

Il Lepton è vivo!

Posted in scooter elettrici by jumpjack on 19 maggio 2013

Atala/Oxygen Lepton anni 2000

lepton

  •  Batteria:
    • Versione base: Piombo ad elettrolita assorbito, senza manutenzione, 4x12V/38Ah/14kg (tot
      56 kg), 1824 Wh, ricarica in 5 ore, caricabatterie integrato;
    • versione “E”: batterie nichel-zinco (1)
  • Estraibilità batteria: no
  • Potenza: 1800 W, 48V , 37,5A
  • Velocità max: 45 km/h
  • Accelerazione: 0-50 km/h in 6,5 secondi (0,22 g)
  • Autonomia: 50 km (35 reali (2))
  • Pendenza max:  n/d
  • Freni: Tamburo/Tamburo, KERS (recupero energia)
  • Peso: 133 kg

(in corsivo i dati calcolati da me)
(1)   Prodotte dalla ditta statunitense Evercel Inc (in precedenza appartenuta
alla  Energy  Research  Corporation)  che  le  progettava  presso  la  Evercel
Danbury  in  Connecticut,  e  le  produceva  a  Xiamen,  in  Cina;  nel  2006  la
Evercel  concesse  in  licenza  la  produzione  delle  sue  batterie  nickel-zinco
alla CM Partners di Kynugkido, in Corea, per 20 anni.

(2) Da test su strada pubblicati da “La Repubblica” il 2 aprile 2002

———————————

Nuovo, piccolo passo nel restauro dell’Oxygen Lepton anni 2000 comprato usato a 100 euro qualche mese fa.

La prima prova era stata verificare se camminava: sì, ma per 50 metri, causa batterie esauste. Non importa, l’importante è che l’elettronica e il motore funzionino!

La seconda prova e’ stata la verifica delle batterie:

Le ho collegate tutte in parallelo anzichè in serie, in modo da poterle caricare con un normale caricabatterie da auto, ma non ha funzionato:

– all’inizio il c.b. neanche le voleva caricare, “vedendole” come batterie da 6V già cariche… così le ho tenute per diverse ore collegate a una batteriola da 12V/7Ah, giusto per svegliarle; in effetti così finalmente il c.b. è riuscito a “vederle”, iniziando però a caricarle in “modalità impulsiva” (cioè probabilmente a desolfatarle). Però la desolfatazione andava avanti solo per qualche ora, poi il c.b. si spegneva e dovevo riaccenderlo a mano. Dopo un paio di giorni (non continuativi, di notte lo spegnevo per motivi si sicurezza) finalmente sul c.b. si è accesa la lucetta verde di ricarica completata. Le batterie hanno però mantenuto la carica solo per pochi giorni, sebbene non utilizzate, scendendo presto sotto gli 11 volt
-poi ho fatto un’altra prova, collegandole per ore a una superbatteria da 500 (cinquecento) Ah, ma anche così il c.b. all’inizio cercava solo di desolfatarle per ore e ore prima di iniziare a caricarle. Le ho tenute sotto carica, in giardino, per 72 (settantadue) ore, ma niente da fare, la spia verde non si accendeva mai. Così ho provato a controllare il voltaggio delle batterie… e nello spostarne una, mi sono accorto che era tiepida! Male, male, molto male!!! Quindi era questo il problema: una singola batteria fallata, che costituisce un “buco di energia” che ha disperso per 72 ore l’energia proveniente dal C.B., impedendo la ricarica!
-Infatti, eliminata la batteria fallata, il c.b. riesce rapidamente a caricare le altre 3!

Però nel Lepton ne servono 4, così ne compro una nuova, ma una normale, per automobile, preoccupandomi solo delle dimensioni fisiche: non mi interessano specifiche e peso, tanto devo solo fare due esperimenti: vedere se lo scooter riesce a raggiugere i 45 km/h, e verificare se, come dice l’ENEA, si possono usare normali batterie per auto invece di batterie da trazione, se in parallelo gli si mette una “fonte di alte correnti che si faccia carico dei picchi di assorbimento”: loro hanno usato supercondensatori da migliaia di euro, io userò 16 supercelle LiFePO4 26650 della defunta A123  da 60/120A, da circa 10 euro l’una.

La terza prova è stata il test su strada: funziona, la batteria per auto è riuscita a fare da surrogato per la batteria mancante, permettendomi di fare mezz’ora di prove su strada. Non che al termine fosse scarica, ma avevo tutti i dati che mi servivano.

La prova è stata interessante sotto molti aspetti:

* ho dovuto spingere a mano lo scooter fino a una stradina di campagna dietro casa, perchè non è targato nè assicurato, visto che neanche sapevo se fosse in grado di circolare, quindi di fatto non è autorizzato a circolare su strada. Per fortuna ho dovuto solo “fare finta” di spingerlo, perchè visto che il motore funziona, è stato lui a spingere!

* arrivato alle pendici della stradina (un’esagerata salità del 15-20%), indosso casco e guanti in previsione di eventuali scatafasci, imposto la modalità leprotto, e via…

ZOOOOW, un vero razzo! In modalità leprotto lo scatto è davvero impressionante!! E la salitona non impensierisce più di tanto i 1800W del motore, permettendomi di raggiungere dei rispettabili 20 km/h, che rispetto ai 45 km/h massimi possibili in pianura non sono pochi. Più sotto trovate grafici e filmati.

* Arrivato in cima alla stradina, sono iniziate le vere prove, perchè mi interessava anche vedere la velocità massima in pianura. Senonchè, in quella bella stradina di campagna semideserta indovina un po’ chi mi sorpassa? Una volante dei carabinieri!!! Io sto senza bollo, senza targa e senza assicurazione!!!
Però ho il casco.
Quindi probabilmente non attiro l’attenzione, così mi ignorano, mi sorpassano e se ne vanno!!!!

* Decido di rischiarmela: ormai sono passati ignorandomi… non penso che ci ripenseranno, ripasseranno e mi si inchiappetteranno… no? Ok, mi dice bene, non si fanno rivedere fino alla fine dei test!

* Eccomi dunque ai test in pianura: in modalità normale lo scooter è una vera mosceria, sembra di guidare un pesantissimo Emax al piombo. ‘na lagna. ‘na noia. Ma riesce comunque, con pazienza, a raggiungere i 45 km/h, anzi 48.

* In modalità leprotto è tutta un’altra faccenda: come si vede dal grafico, ha addirittura più scatto del potente EMCO Novum 77 da 5000 Watt!!! Poi si ammoscia in seguito, ma lo scatto iniziale è davvero potente! Ma curiosamente non è fastidioso, perchè è potente solo se “affondo” l’acceleratore, altrimenti è graduale. E NON graduale/impossibile come il Lepton nuovo, che per i primi due secondi di acceleratore a tavoletta sembra un bradipo stanco e poi parte a razzo, no, questo acceleratore è molto più confortevole!

* Anche il freno rigenerativo è molto migliore del Lepton nuovo, perchè molto più facilmente dosabile con l’acceleratore. E su una discesa del 15-20% usare i freni quasi non serve, se la strada è buona e sgombra, perchè non si superano i 40 km/h.

* Unico aspetto negativo del test: i cavi di collegamento della nuova batteria alle altre si sono surriscaldati; ma probabilmente solo perchè sono troppo sottili, perchè anche se esteriormente sembrano identici a quelli che collegano le batterie l’una all’altra (che però stranamente sono più sottili di quelli che collegano la batteria allo scooter), in realtà sono molto più flessibili, quindi probabilmente sono tutti guaina e niente rame… Però non ho fatto misurazioni.

* Aspetto curioso: una volta acceso lo scooter…. non sono più riuscito a spegnerlo! 🙂

  • Ho girato la chiave nel quadro, ma lo scoote rcammina ancora.
  • Ho TOLTO la chiave dal quadro, ma lo scooter cammina ancora (??)
  • Ho tolto anche la chiave elettronica dal quadro, ma lo scooter cammina ancora!!!

Ohibo’??

* Ultima nota, l’indicatore di autonomia residua: appena acceso lo scooter, indicava i canonici 50km; durante i test, ha oscillato tra i 9 (nove) e i 56 km, a seconda di velocità, pendenza, posizione acceleratore e chissà quante altre cose….
Molto utile…

Comunque, la prova è stata soddisfacente: multa evitata 🙂 , scooter funzionante, velocità decente (in alcuni tratti anche 50 km/h), pendenza superabile notevole.

Adesso, il prossimo passo: l’autocostruzione di una batteria al litio; dapprima una piccola per affiancare quelle al piombo e vedere se riesce a dare più potenza in salita; in seguito, una batteria al litio completa da 20/30 AH estraibile.

Restate sintonizzati! 😉

Grafico comparativo con altri scooter:

lepton-e-altri

Grafico comparativo col solo Zem Star 45, l’altro mio scooter:

lepton-zem

Modalità normale: 0-45 in 15s contro gli 8 dello Zem.

Modalità leprotto: 0-45 in 9 secondi, velocità massima 49 km/h.

Come al solito, però, è impossibile sapere quanto correttamente sono tarai i contachilometri; per lo Zem il confronto col GPS dà uno scarto del 18%, ma a volte anche il mio GPS dà i numeri, quindi…

Comunque, questi sono i due grafici registrati col GPS del cellulare, per quello che possono valere:

speed

Test su strada Startlab Open Street

Posted in auto elettriche by jumpjack on 1 aprile 2013

L’altro giorno ho finalmente avuto il piacere, grazie alla cortesia di Fabiano, di guidare di persona una StartLab Open, versione “Street” (v. anche altro post).

Questo è il grafico che avevo già estrapolato da un filmato fatto da Fabiano:

Questa volta ho fatto qualche test più esaustivo: accelerazione in 2 senza boost, in 2 con boost, e da solo.

La prova è un po’ “viziata” dal termine della pianura al raggiungimento dei 40 km/h (non ho trovato una strada piana più lunga…), ma è comunque interessante:

StartLabOpenStreet

I dati sono confrontati con l’unica altra minicar al piombo che ho testato personalmente (a parte la birò, di cui ho dimenticato di fare un filmato del cruscotto…).

Anche se pure la StartLab appare piuttosto lenta in accelerazione rispetto ai vari mezzi al litio che ho provato (scooter e minicar), risulta più scattante del lentissimo Ingaeta G1.

La Openlab ha questi tempi 0-40 km/h

In 2: 15 secondi

In 2 con boost: 12 secondi

In 1 senza boost: come in 1

Si nota però una leggera differenza nella curva dopo i 40 km/h, tra i casi “in 2” e “in 1”.

In ogni caso, il mezzo in pianura difficilmente riesce a superare i 45 km/h, ma devo dire che è meglio così, perchè purtroppo non appare molto stabile: sarà per la leggerezza (lo si sposta facilmente spingendolo con una mano!), o forse per lo sterzo a presa diretta tipo go-kart, che fa svoltare il mezzo appena si sfiora la sterzo, ma la sensazione è che sia meglio non correrci troppo, soprattutto in curva.

Sembrerebbe anche da accantonare l’idea di migliorane le prestazioni installando batterie al litio: sicuramente le prestazioni migliorerebbero con 70-80 chili in meno, ma ne perderebbe la stabilità, per cui si finirebbe col dover zavorrare il mezzo, perdendo quindi uno dei vantaggi del litio (l’altro è la maggiore durata delle batterie).

Rispetto al Birò il mezzo è decisamente più comodo, avendo sotto lo sterzo spazio per allungare le gambe, al contrario del Birò che ha una parete verticale, ed inoltre l’abitacolo è pieno di portaoggetti vari.

Anche lo spazio di carico è davvero notevole: nonostante gli sforzi del produttore per ridurlo (???) “tagliando” il retro dell’auto, il bagagliaio posteriore è davvero enorme! Il che vuol dire che c’è spazio in abbondanza per un gruppo elettrogeno da 2 o 3 kW che permetterebbe di trasformare il mezzo da elettrico in ibrido… (ho visto gruppi da 1 kW stare in uno spazio di 40x40x40 cm!).

Ho invece trovato scomodo il tasto “boost”, che stando sulla plancia anzichè sotto al volante, costringe ad “allungarsi” per premerlo, e tenerlo premuto a lungo è molto scomo (e probabilmente fatto apposta).

Scomdo anche il fatto di non avere “deflettori” nei finestrini o nel tettino, per evitare che si appannino i vetri nei giorni di pioggia, e l’impianto di aerazione non fa moltissima aria; infatti Fabiano dice che intende installare un sistema di sbrinamento a parte.

Interessante notare che il motore è decisamente enorme, più grosso di quello dello scooter Ghibli da 11 kW che ho visto lo stesso giorno! Il che lascia supporre che non sia un motore brushless, ma un vecchio motore a spazzole (non è posizionato in una ruota, ma staccato è collegato alle ruote tramite differenziale e tutto il resto).

La decelerazione data dal motore in caso di recupero in frenata attivato dal pedale del freno è decisamente potente, forse troppo.

In conclusione, un mezzo strettamente adatto solo per la città, a causa della irrimediabile bassa velocità, ma molto meglio di Birò e Ingaeta.

Pare che a Roma ne vengano ancora vendute alcune, senza batterie e a poche migliaia di euro: http://www.hyperdivision.it/elettrico/start-lab/

Diario elettrico carsharing – 7/marzo/2013 a Motodays

Posted in auto elettriche by jumpjack on 7 marzo 2013

Oggi mi sono fatto un altro giretto sulla C-Zero, togliendomi finalmente uno sfizio che volevo togliermi da un anno, quando uscì la notizia che la C-Zero poteva essere noleggiata per 60 euro al giorno (sì, con 500 euro di cauzione e solo con carta di credito…)

Citroen C-Zero in ricarica solitaria alla Fiera di Roma

Trattasi del parcheggio della Fiera di Roma.

La sensazione di solitudine era notevole, con una sola colonnina sopravvissuta e il “parcheggio-verde” deserto…

Nel giro di oggi ho fatto una prova di accelerazione 0-130 inquadrando il tachimetro; l’avevo già fatta usando invece il GPS del mio cellulare… che però a un certo punto ha segnato 296 km/h (forse credeva di stare su una Tesla Roadster? 🙂 ), e comunque quando ha ripreso a ragionare aveva degli sbalzi inconsulti di velocità, non particolarmente utili per valutare le prestazioni dell’auto…

Ecco il risultato, a confronto con quelli ricavati da altri video:

accelerazine-C0

Il risultato appare esattamente sovrapponibile alle prestazioni della Renault Fluence Z.E., e leggermente inferiore a quello delle auto ibride.

Infine, una bella foto dedicata a chi si diverte a parcheggiare le auto puzzone nei parcheggi riservati alle elettriche, tiè: 🙂
Parcheggio carsharing occupato abusivamente

Parcheggio carsharing occupato abusivamente – Giovedì 7 marzo 2013 – 15:05

P.S.
Nessuno sa dove trovare filmati o grafici di accelerazione per qualche utilitaria a benzina?

Grafici accelerometrici di vari terremoti

Posted in terremoto by jumpjack on 6 maggio 2009

Questi grafici, tracciati su base dati ITACA, permettono di confrontare direttamente la potenza dei vari terremoti: i grafici possono essere confrontati solo sulle stesse ascisse (che indicano i Km di distanza del sismometro dall’epicentro).

Notare che il numero di barre presenti NON indica il numero di scosse, ma solo il numero di sismometri, quindi se ci sono piu’ barre non vuol dire che il terremoto è stato piu’ forte.

 

I dati sono espressi in termini di accelerazione, come cm/s2; l’accelerazione di gravità, cioè “la forza che ci tiene attaccati a terra” o “la forza che dà origine al nostro peso” (mi si perdoni la colloquialità delle espressioni…) è di 1 “g”, ossia 9.81 metri/s2, o 981 cm/s2.

E’ importante osservare che l’accelerazione del suolo aumenta esponenzialmente man mano che ci si avvicina all’epicentro, quindi solo i dati sismografi equidistanti dall’epicentro sono comparabili direttamente; per questo motivo i dati grezzi di accelerazione ottenuti da sismografi e accelerometri vengono convertiti in magnitudine, che è invece un valore assoluto, e permette quindi di confrontare direttamente due terremoti.

Dati da Istituto Nazionale di Geofisica e Vulcanologia (INGV), servizio “ITACA” – ITalian ACcelerometric Archive:

http://itaca.mi.ingv.it/