Jumping Jack Flash weblog

Wallbox (colonnina di ricarica domestica)

Posted in auto elettriche, minicar elettriche, scooter elettrici by jumpjack on 2 giugno 2018

Una “wallbox”, o “colonnia di ricarica domestica” come quella nella foto, è un’ “apparecchiatura” del costo di 500-1000 euro che serve a collegare l’auto elettrica all’impianto di casa, per la ricarica della batteria.

In realtà, si tratta sostanzialmente di una specie di truffa: una wallbox, fondamentalmente, è una scatola di plastica (costo industriale: 5 euro di materiale) che contiene una presa (costo industriale: 5 euro) e un salvavita (costo tipico: 20-30 euro). Come si arriva da 40 euro di costo a 1000 euro di prezzo?

Un vero mistero.

C’è chi dice che la wallbox è migliore perchè ha il telecontrollo, il misuratore di consumi, il regolatore di potenza di carica, e questo e quell’altro…. Si vabbè, ma se a me tutte queste cose non mi interessano??? Voglio solo una presa di corrente dove attaccare la macchina! E non posso usare una presa domestica standard, sennò dopo 10 ricariche si cuoce, si squaglia e va tutto a fuoco; e anche con una Schuko non va molto meglio.

Quindi, che fare?

Cercare, cercare, cercare per anni in ferramenta vari… finchè ti imbatti finalmente in questa cosa da 20 euro!

  • Numero di serie del produttore (Rosi): RS6411
  • Codice a barre: 8050040700240
  • Riferimento Leroy Merlin: 35511714

Largo 108×205 mm e profondo 85mm, questo semplice scatolotto da due soldi ha tutto quello che mi serve per diventare la mia wallbox per esterni:

Spazio per salvavita ed eventuali future espansioni (contatore, telecontrollo, ecc..):

 

Resistenza alle intemperie:

Ampio spazio interno per tutti i miei eventuali futuri accrocchi 🙂 :

 

Lo scatolotto  viene venduto con preinstallata un’inutile presa industriale:

Ma qui viene il bello: lo scatolotto è predisposto per montarci una varietà di prese a piacere, grazie alla pre-foratura:

 

Così, ho potuto tranquillamente togliere la presa industriale e mettere una SCAME LIBERA 200.01663  per ricarica di mezzi elettrici leggeri (220V/16A/3kW):

 

La pre-foratura multipla è importante perchè le viti della Scame hanno passo 73×56 mm, mentre il passo della presa industriale era 60×60 mm, e non c’è nemmeno uno standard perchè ci sono prese con passo 60×50, altre 70×60,… Dimensioni ufficiali SCAME LIBERA 200.01663:

E, a proposito di dimensioni ufficiali, ho scoperto che dal sito SCAME è possibile scaricarsi i modelli 3d delle varie spine e prese!

Per esempio, volete sapere di preciso com’è fatta una spina SCAME LIBERA da cavo? Basta cliccare sul link in fondo a questa pagina, “disegno tecnico (STP)“. Il formato .stp (STEP) è un formato professionale per i modelli 3d, basato su primitive geometriche (cerchi, linee,…), piuttosto che su una “geometria fissa a facce triangolari”, usata nel formato .STL o .OBJ comunemente usato per stampare oggetti in 3d; la differenza è in sostanza la stessa che c’è tra un’immagine vettoriale e una bitmap: un file step e un’immagine vettoriale possono essere ridimensionate a piacimento senza mai perdere definizione, mentre un file step o un’immagine bitmap “sgranano” ingrandendo o perdono risoluzione rimpicciolendo.

Per convertire da un formato all’altro si può usare il programma gratuito FreeCad, che supporta decine e decine di formati.

Purtroppo sul sito SCAME ci sono i modelli di tutto… tranne le prese da cavo Mennekes Tipo 2! Probabilmente per motivi di copyright, visto che Scame e Mennekes sono ditte concorrenti. Ci sono però i modelli delle prese  Mennekes Tipo 2 da incasso, dalle quali forse  si può riuscire a ricavare anche il modello della presa volante.

In realtà non sono modelli molto precisi per quanto riguarda l’interno; probabilmente hanno solo lo scopo di mostrare ingombri e forma esterna; però, mettendo insieme i vari modelli disponibili per il download, forse si può riuscire a ricostruire anche l’interno di una presa Mennekes, in modo da potersela stampare per 10 euro invece che comprare per 100 euro.

Resta però ancora il problema di  dove trovare i pin-femmina da montarci dentro. Di pin di potenza ce ne sono vari su RS-Components, ma devo ancora capire quali sarebbero quelli giusti. Il fatto che ora sia possibile anche scaricarne il modello 3d potrebbe forse aiutare meglio dei datasheet.

 

Altra possibilità per il Wallbix fatto in casa è questo quadro simile, ma con chiusura “a manopola” che forse può diventare anche “a chiave”, chissà; costa anche questo meno di 20 euro:

Riferimento Leoroy Merlin: 35511714

 

Se serve più di una presa, c’è questo:

Essendo venduto senza nessuna presa, costa persino di meno! 16,50 invece che 18,50 (addirittura 14,70 da Bricoman).

Riferimento Leoroy Merlin: 35511560

Dimensioni:  L 125 x H 495 x P 107 mm

 

Attenzione perchè prendendolo invece con già montate 3 prese industriali (inutili), un differenziale, un cavo e una spina industriale (inutile), il prezzo lievita a 85 euro!

 

Altro:

Quanto segue è riportato solo a scopo indicativo; si raccomanda di far effettuare l’installazione a un elettricista qualificato; un impianto elettrico  destinato a veicolare 2-3 kW per 8-10 ore al giorno, se non realizzato a regola d’arte può causare danni a cose e/o persone (incendi, elettrocuzione, danneggiamento veicolo,…)

Quanto sopra è riportato solo a scopo indicativo; si raccomanda di far effettuare l’installazione a un elettricista qualificato.

Posted in auto elettriche, minicar elettriche, scooter elettrici by jumpjack on 7 aprile 2018

Tutto pronto per Gran Premio e Grande Sconto: sabato 14 aprile 2018 a Roma, presso l’E-Village allestito nel nuovo palazzo dei congressi “Nuvola” all’EUR, i  libri “Guida all’auto elettrica” e “Guida alla costruzione di una batteria al litio” saranno in vendita al prezzo speciale di 10,00 euro ciascuno invece che 15,00 (addirittura 18,00 in totale se comprati in coppia): basterà far presente, al momento dell’acquisto, di essere a conoscenza di questa pagina o del RadunoElettricoRomano 2018.https://autoguida.wordpress.com/2018/04/07/sconto-eprix-2018/

Sito ufficiale dei libri: https://autoguida.wordpress.com/

 

 

Raduno Elettrico Romano 2018

Posted in auto elettriche, minicar elettriche, scooter elettrici by jumpjack on 27 marzo 2018

Quest’anno a Roma ci saranno ben DUE raduni in occasione del Gran Premio di Formula Elettrica

Sabato 14 aprile 2018 – angolo viale Europa/ via dell’Arte, ore 11.00

Domenica 15 aprile 2018 – Piazza “Bocca della verità” – ore 10:30

 

Il gran premio si svolgerà Sabato 14 con questo programma:

Programma E-Prix Rome 2018

Programma E-Prix Rome 2018

 

 

Diario elettrico Ecojumbo 5000 – 10/2/2018: mezzi elettrici indistruttibili!!!

Posted in batterie, scooter elettrici by jumpjack on 10 febbraio 2018

Sono passati più di 13 mesi da quando ho parcheggiato per un’ultima volta lo scooter dopo aver sfasciato il cerchione posteriore in una buca:

Il cerchione è stato aggiustato a suon di martellate e sfiammate, ed è tornato apparentemente come nuovo, almeno meccanicamente…. ma elettronicamente? I magneti non reagiscono bene a calore e martellate…

Finora non l’avevo mai provato: dal momento che le strade della mia zona sono diventate impraticabili per via delle buche, ho solo rimontato la ruota ma non ho mai ricollegato i fili.

Oggi, con la prospettiva di vendere, forse, lo scooter, in vista dell’acquisto della minicar elettrica GreenGo Icaro, ho  deciso di mettermi lì con calma a scartabellare tra vecchi appunti, vecchie foto e ragnatele di fili sparsi…

Alla fine sono riuscito a ricollegare tutto.

Ho acceso il quadro, ho girato la manopola, il quadro si è acceso (è già un mezzo miracolo, dopo 14 mesi di non utilizzo delle batterie!), è scattato il relè collegato alla resistenza di precarico, ho girato la manopola dell’acceleratore e….

…niente.

…azz, vuoi vedere che  fiamma e martellate ha davvero sconquassato il motore…?

Ah no… è solo che ho ricollegato “solo” i 14 fili di controllo della centralina… ma non ho ricollegato i 3 grossi cavi del motore!  Doh!

Riprovo.

Spengo.

Ricollego.

Giro la manopola eh…

WOW!

Il motore gira che è un piacere! Nessun danno apparente derivante da martellate e sfiammate! Almeno, sul cavalletto. Poi bisognerebbe vedere in strada…. però ho lasciato scadere l’assicurazione, quindi si vedrà.

Passiamo alle batterie:

 

No dico, ma vi rendete conto? La batteria è stata ferma 13 mesi, per di più senza BMS perchè si era bruciato e lo dovevo cambiare… e lo sbilanciamento massimo tra celle è di 4 mV!!!! Ed è ancora praticamente carica!!! (la piena carica è a 3,3V/cella).

Per la cronaca, si tratta delle batterie estraibili a LiFePO4 da 60V/20Ah della EcoItalMotor .

Quello che invece ha resistito molto peggio, invece, è la meccanica, sotto sole, ghiaccio, vento, pioggia:

La vernice si è tutta sgarrupata, la plastica del contachilometri è diventata quasi completamente opaca…

Sul vecchio Zem Star 45 dopo 3 anni sotto le intemperie dovetti sostituire la plastica del contakm  (fabbricandola a mano su misura da un foglio di plexiglass), qui mi sa che dovrò fare lo stesso, se deciderò di tornare in circolazione. Ma ammetto che aver visto ripartire il motore mi ha fatto venire un po’ di nostalgia delle mie scorribande elettriche a due ruote! Quindi, almeno per ora, non si vende. Però devo trovare un posto dove mettere lo scooter per fare spazio alla icaro…

 

Diario elettrico hoverboard – 4 gennaio 2018: le modifiche

Posted in ambiente, hoverboard, scooter elettrici by jumpjack on 4 gennaio 2018

Sono ormai parecchi mesi che ho comprato un simil-segway, cioè un “hoverboard col manico”.

Hoverboard Go!Smart

Hoverboard Go!Smart

Lo trovo decisamente utile per le escursioni turistiche cittadine, anche se purtroppo in alcuni posti iniziano a vietarmi l’ingresso…. tipo un paio di musei, o i supermercati dei centri commerciali.

Comunque, nel frattempo ho apportato alcune modifiche/migliorie al prodotto:

  • spostamento display: nativamente il display per la ricarica si trova sulla pedana, in mezzo ai piedi, ed è scomodissimo da consultare; ma il manico è cavo e il manubrio è di plastica, anch’esso cavo, quindi non ci è voluto molto a “trasferire” il display nel manubrio, rendendolo così molto più leggibile; il cavo di collegamento è un cordone a spirale del telefono, che così può assecondare allungamenti e accorciamenti del manico telescopico.
  • Posizione iniziale del display, al centro della pedana

     

     

    Nuova posizione del display

  • rinforzo sul manubrio: il punto di attacco del manubrio all’hoverboard è molto sollecitato a causa della leva lunga un metro, quindi stavano saltando alcuni punti di saldatura: niente di drammatico, perchè comunque il manico è avvitato con due viti, però iniziava ad avere troppo “gioco”: forse 1 grado… che a un metro di distanza significava spostare il manubro di 5-10 centimetri a destra o a sinistra senza che il mezzo effettivamente svoltasse; così, ho aggiunto un piastrino di alluminio che blocca il gioco del manubrio.
  • antifurto: visto che probabilmente sempre più spesso mi vieteranno di entrare da qualche parte, ma che comunque il mezzo è impagabile per coprire la distanza dal parcheggio al luogo di interesse, ho aggiunto alla pedana un anello d’acciaio, dentro al quale posso far passare un antifurto da bici, e legare così l’aggeggio a un palo proprio come si fa con una bici. Il telaio è di alluminio quindi non è stato difficile forarlo.
  • Anello antifurto

 

Diario elettrico Ecojumbo 5000 – 4 gennaio 2018: secondo inverno fermo

Posted in Diario elettrico Ecojumbo 5000, scooter elettrici by jumpjack on 4 gennaio 2018

Poco più di un anno mettevo a riposo forzato lo scooter causa rottura del cerchione/motore in una delle tante buche stradali.

Ancora oggi non sono risalito in sella, per il semplice fatto che la situazione non è migliorata ma peggiorata: nel mio percorso abituale casa-lavoro sorgono settimanalmente nuove buche di dimensioni colossali; quella che ho visto ieri era larga, credo, 50×100 cm, ma la cosa più inverosimile è che era profonda almeno 15 cm! Se non l’avessi vista, avrei spaccato persino la ruota della macchina… figuriamoci se l’avessi presa con lo scooter… E non era neanche sola: lì intorno c’era una simpatica costellazione di altre buche (per tacer delle altre nel resto del tragitto).

Però questa fabbrica di smog che è la mia Fiesta diesel Euro 4 mi sta stufando, spero proprio che col nuovo governo e con l’ormai appurata esplosione dell’elettrico si decidano a sbloccare gli incentivi bloccati 3 anni fa!

O forse  mi deciderò, incentivi o no, a comprarmi una Hyundai Ionique ibrida? Mi sa che vado almeno a informarmi…

 

Scooter elettrici in autostrada: due leggi in attesa

Posted in scooter elettrici by jumpjack on 17 dicembre 2017

Diario elettrico hoverboard – Puntata 1 – 11 marzo 2017: l’acquisto

Posted in ambiente, hoverboard, scooter elettrici, Uncategorized by jumpjack on 13 marzo 2017

Si apre con questo post un nuovo “diario di bordo” di un mezzo elettrico; sempre a due ruote…. ma questa volta parallele!

Si tratta di uno di quelli che comunemente vengono soprannominati “hoverboard”, in omaggio allo “skateboard volante” (o “volopattino”) che, nel 1985, fu previsto che sarebbe stato inventato entro il 2015 e usato da Marty Mc Fly per sfuggire ai suoi inseguitori nel film “Ritorno al futuro”.

 

 

In realtà, il 2015 è passato ma nessuno è ancora riuscito a inventare un “annullatore gravitazionale”, per cui qualunque “board” deve ancora stare saldamente appoggiata a terra; però anzichè avere 4 ruote, adesso può averne 2…. o persino solo una: esistono anche infatti degli strambi “skateboard monoruota” con un unico ruotone centrale, ma anche veri e propri “monoruota” con due pedane laterali dove poggiare  i piedi…

Sì insomma, i potenti e compatti motori brushless, insieme alle potenti e compatte batterie al litio, hanno ormai permesso di realizzare i mezzi di trasporto più impensati!

Quello che ho comprato io è un modello “simil-Segway”, cioè a pedana singola e con manubrio, perchè lo trovo più comodo e stabile, e perchè avendo un manubrio può anche essere semplicemente “trainato”, anzichè portato in braccio (anche se pesa solo 10 kg), in caso ci si trovi a dover attraversare tratti non percorribili “a ruote”; in più al manubrio si possono anche appoggiare/appendere borse e giacchetti.

Purtroppo, anche se ha le ruote un po’ più grandi degli hoverboard senza manubrio, anche questo hoverboard, come quelli piccoli, ha le ruote in gomma piena senza camera d’aria, quindi anche la minima asperità di 1-2 cm “si sente”, e se non si sta attenti può anche rendere difficoltoso il movimento (diciamo insomma che i sampietrini non sono il fondo ideale per questo tipo di hoverboard). In realtò la circolazione fuori da aree private è al momento vietata, quindi la cosa non dovrebbe essere un problema: la legge attuale prevede infatti che tali mezzi possano essere usati solo in aree private… quindi dentro casa, su pavimento ben liscio.

I dettagli sula guida li rimando a un prossimo post, da compilare dopo aver percorso qualche chilometro di prova. (questi mezzi sono dati per 20 km di autonomia in condizioni indeali, quindi immagino non più di 10 in condizioni reali… che sono più che sufficienti per un pedone!)

  • Costo di acquisto: 319,00 euro da Mediaworld.
  • Modello: ….
  • Autonomia dichiarata: 20 km
  • Autonomia reale ipotizzabile: 10 km
  • Batteria: ~150 Wh, 36V, 4.5Ah
  • Velocità max: 20 km/h

 

Annotazioni preliminari:

  1. Manca un avvisatore acustico tipo “campanello di bici”, però c’è un avvisatore acustico automatico di retromarcia.
  2. Sono presenti indicatori di direzione automatici, ma sono blu.
  3. Ci vorrebbe un gancetto sul manubrio per appendere meglio borse o giacchetti.
  4. Percorsi almeno 7 km con una carica (però non misurati dall’inizio…).
  5. Ruote piene, i sampietrini si sentono tutti…
  6. Manubrio regolabile in alteza.
  7. Da manuale: vietato ai minori di 8 anni, vietato uso in luoghi pubblici, vietato uso di notte.
  8. Display stato batteria scomodissimo, situato dietro ai piedi.
  9. Manca stabilizzatore di tensione, quindi in salita e in accelerazione l’indicatore della batteria scende parecchio.
  10. Modalità “follia” attivabile da telecomando: il mezzo cammina da solo anche senza nessuno sopra! Ma non è manovrabile tramite telecomando! E non sta fermo, cammina in avanti da solo!
  11. Autolimitazione di legge a 6 km/h non disponibile.
  12. Nessun display sul manubrio, nonostante l’apparente predisposizione.

Dati da aggiungere su Wikipedia:

Comparsa sul mercato

Sul finire del 2016 hanno iniziato a comparire sul mercato particolari mezzi di trasporto che, pur non essendo ovviamente volanti, sono stato presto soprannominati “hoverboard”, probabilmente proprio in omaggio al “volopattino” del film “Ritorno al futuro“; trattasi in realtà di “self balancing scooter”, ossia “scooter autobilancianti”, cioè veicoli a due ruote parallele che, mediante sensori giroscopici e opportuna elettronica di bordo, riescono a mentenersi in equilibrio orizzontale, anche con persone a bordo, senza bisogno di appoggi ulteriori e senza bisogno di essere in movimento, dando l’impressione di essere “impossibili”, un po’ come lo è l’hoverboard del film.

Come funzionano

Come accennato, un “self balancing scooter” è in grado di mantenersi in equilibrio orizzontale e sostenere il peso di una persona pur avendo 2 soli punti di appoggio, mentre tecnicamente il numero minimo di punti di appoggio necessari perchè un oggetto sia stabilmente appoggiato sul terreno è 3, per contrastare i due gradi di libertà che causano i movimenti di rollìo (rotazione destra-sinistra) e beccheggio (rotazione avanti-indietro).

Gli hoverboard possono quindi restare in equilibrio solo fintantochè sono accesi e l’elettronica di bordo comanda opportunamente i due motori delle ruote; tali motori sono indipendenti e di tipo brushless, una tecnologia che consente alta potenza in volume ridotto e non richiede operazioni di manutenzione come la sostituzione periodica delle spazzole.

Per poter comandare opportunamente i motori delle due ruote, l’elettronica di bordo deve conoscere in ogni istante l’orientamento rispetto al suolo della “tavola” o “pedana”, che al tempo stesso unisce le due ruote e funge da supporto per il guidatore ([1]); a tale scopo utilizza sensori giroscopici e accelerometri: un sensore giroscopico rileva la velocità di rotazione di un oggetto, mentre un accelerometro a tre assi rileva la posizione statica di rotazione di un oggetto rispetto a un sistema di riferimento predefinito, ad esempio quello in cui gli assi X e Y sono paralleli al terreno e Z ha la direzione dell’accelerazione di gravità e il verso opposto (punta cioè verso l’alto).

I sensori vengono utilizzati anche per comandare movimento e sterzata del mezzo, in modi diversi a seconda del tipo di hoverboard: a tavola singola e a tavola spezzata.

 

Hoverboard a tavola singola

In questi modelli il guidatore poggia su un’unica tavola che unisce le due ruote; tale tavola può essere inclinata dal guidatore solo in avanti e indietro, per comandare il movimento in avanti o indietro e la frenata; per svoltare a destra e a sinistra occorre quindi un comando separato, costituito generalmente da una sorta di manubrio, ossia un’asta orizzontale fissata alla pedana tramite un’asta verticale; tale manubrio, però, a differenza di quello di cicli e motocicli, non funziona per rotazione intorno all’asse verticale, ma per rotazione intorno a un asse orizzontale: è infatti incernierato sulla pedana di sostegno, e piegandolo verso destra o verso sinistra fa sì che le due ruote vengano fatte girare a velocità diverse, innescando così una rotazione della pedana intorno all’asse orizzontale (imbardata).

 

Hoverboard a tavola spezzata

In questa variante non è presente un manubrio, quindi anche la rotazione sull’asse verticale (imbardata) è controllata tramite inclinazione della tavola; essa è quindi divisa in due parti separate al centro, che possono essere inclinate separatamente in avanti e indietro tramite rotazione dei piedi da parte del guidatore; l’inclinazione delle semi-tavole determina direzione e velocità di rotazione delle singole ruote, per cui se le due inclinazioni sono uguali in avanti o indietro, il mezzo si muoverà in linea retta, altrimenti girerà verso destra o verso sinistra.

Sicurezza

Per garantire un certo grado di sicurezza, sulla pedana possono essere presenti dei sensori di pressione: se rilevano la presenza del guidatore, attivano l’autobilanciamento e il controllo di velocità e rotazione, altrimenti l’hoverboard resta inerte e, di fatto, disattivato, di modo che non può muoversi in modo autonomo. Tali sensori hanno una sensibilità tale per cui è necessario che il guidatore abbia almeno un peso minimo per essere attivati, motivo per cui alcuni modelli non sono adatti, ad esempio, a guidatori di peso inferiore a 35 kg, che non attiverebbero correttamente i sensori col proprio peso.

Gli hoverboard sono in grado di muoversi a velocità considerevoli rispetto a quella di un pedone (10 km/h quelli a tavola spezzata, 20 km/h quelli a tavola singola), e anche la velocità di rotazione intorno al proprio asse può essere considerevole se non opportunamente dosata, motivo per cui il loro utilizzo è vietato ai bambini di età inferiore agli 8 anni, mentre tra gli 8 e 18 anni è consigliata al supervisione di un adulto, perhcè, anche se il guidatore è in grado di padroneggiare il mezzo, esso è comunque in grado potenzialemente di recare danno sia al guidatore stesso che a terzi, richiedendo quindi un certo grado di responsabilità.

Normativa

Essendo mezzi di recentissima comparsa sul mercato, non esiste ancora una normativa specifica che li riguardi, per cui di fatto il loro utilizzo in luoghi pubblici o strade è vietato dalla legge, che ne consente quindi l’utilizzo solo in aree private (casa, giardino). Unica eccezione esiste attualmente (marzo 2017) per il modello “Segway” (mezzo autobilanciante a tavola singola con manubrio), in commercio da più di 15 anni e in uso anche presso le Forze dell’Ordine, e per il quale il Ministero dei Trasporti ha emesso una legge su misura (nota 26702 del 20.03.07), qui sotto riassunta nei punti salienti:

Il Ministero dei Trasporti italiano, Dipartimento per i Trasporti Terrestri, personale, affari generali e pianificazione generale dei trasporti, con propria nota 26702 del 20.03.07, riassume i criteri per l’utilizzo di Segway PT su “marciapiedi”, “aree pedonali” e “piste ciclabili” definiti dall’art. 3 del Codice della Strada (CdS), dettando le seguenti limitazioni:

  1. velocità massima non superiore a 6 Km/h con sistema di limitazione predisposto dal costruttore, per le “aree pedonali” e per i “marciapiedi”;
  2. velocità massima non superiore a 20 Km/h su piste ciclabili;
  3. obbligo di dare la precedenza ai pedoni e di tenere la destra sui marciapiedi;
  4. divieto di utilizzo a conducenti con età inferiore a 16 anni;
  5. divieto di utilizzo in condizioni di scarsa visibilità. Per esempio marciapiedi e piste ciclabili per niente o poco illuminate durante le ore notturne.
  6. tali limitazioni non sussistono per quanto riguarda un possibile utilizzo del mezzo da parte delle forse armate di cui all’art. 11 c. 1 del CdS e agli enti o corpi equiparati ai sensi del c. 11 dello stesso articolo, e da parte delle polizie municipali.

[…]

Il Ministero chiarisce, inoltre, che Segway PT non rientra tra gli acceleratori di andatura di cui ai commi 8 e 9 dell’art. 190 del CdS in quanto trattasi di mezzo non funzionante a propulsione esclusivamente muscolare.

 

Nel 2012 è stata proposta una modifica all’articolo 50 del Codice della Strada (successivamente riproposta nel 2013 come  emendamento 4.141 al Disegno Di Legge  S.1120 nel 2013 (RESPINTO), poi riproposta nel 2014 come emendamento 1.06 al Disegno Di Legge C.1512 ) per aggiungervi la definizione di “mezzo elettrico con bilanciamento assistito”; tale modifica cambierebbe l’articolo 50 come segue (in neretto l’aggiunta):

Art. 50.Velocipedi.

1. I velocipedi sono i veicoli con due ruote o più ruote funzionanti a propulsione esclusivamente muscolare, per mezzo di pedali o di analoghi dispositivi, azionati dalle persone che si trovano sul veicolo; sono altresì considerati velocipedi le biciclette a pedalata assistita, dotate di un motore ausiliario elettrico avente potenza nominale continua massima di 0,25 KW la cui alimentazione è progressivamente ridotta ed infine interrotta quando il veicolo raggiunge i 25 km/h o prima se il ciclista smette di pedalare nonché i mezzi elettrici, concepiti per il trasporto di una sola persona di età non inferiore a 16 anni, con bilanciamento assistito ovvero dotati di due ruote in asse con sistemi e sottosistemi di sicurezza ridondanti che hanno una velocità massima di 20 Km/h con possibilità di autolimitazione a 6 Km/h. 2. I velocipedi non possono superare 1,30 m di larghezza, 3 m di lunghezza e 2,20 m di altezza.

Al 13 marzo 2017 questa modifica non è stata ancora approvata.

 

Diario elettrico Ecojumbo 5000 – 5 marzo 2017, rimontaggio motore

Posted in auto elettriche, Diario elettrico Ecojumbo 5000, scooter elettrici by jumpjack on 6 marzo 2017

buca

Dopo mesi di attesa e di “stasi” ho deciso di cimentarmi nel rimontaggio del motore riparato.

Non che abbia intenzione, almeno per il momento, di risalire in scooter: proprio oggi ho “sorvolato” con l’auto una buca di dimensioni sconsiderate; “sorvolato” nel senso che ci sono passato sopra con l’auto ma non con le ruote; ma se ci fossi finito dentro con lo scooter (o anche con l’auto) non sarebbe stato bello: a occhio e croce la buca, sulla corsia di sorpasso di una strada a scorrimento veloce (uscita 12 del GRA), è larga mezzo metro e profonda 10 centimetri, con bordi frastagliati. Una follia stradale. Non è quella della foto, ma la foto dà comunque un’idea di come siamo messi a Roma…

Penso che si sfascerebbe anche la macchina, se ci finisse dentro! Quindi per ora – e per chissà quanti altri mesi ancora – di andare in giro in scooter non se ne parla. Leggere certi articoli (1, 2, 3, 4) sul Messaggero non rende molto ottimisti sui tempi di risoluzione del problema.

 

Intanto, dicevo, ho rimontato il motore; non è stato per niente facile perchè a quanto pare i buchi delle borchie non corrispondono più coi buchi del cerchione! Sarà dovuto alla riparazione? O a qualche mio errore? Boh, fatto sta che, tira e molla, alla fine sono riuscito ad avvitare su un lato “solo” 17 delle 18 viti del cerchione, l’altra non vuol saperne di entrare; quelle sull’altro lato, anche se un po’ a forza, sono entrate tutto.

Spero che questo non comprometta la tenuta stagna del motore, perchè l’acqua che entra in un motore non è una bella cosa…

Successivamente sono passato al rimontaggio del motore sullo scooter: una fatica disumana, perchè se per smontarlo la gravità mi era di aiuto a tirare giù una ruota da 20 chili, nel rimontarla non mi ha ovviamente aiutato per niente! E senza attrezzi appropriati, mi sono fatto un **** così.

Alla fine ho deciso si smontare la pinza del freno a disco per avere un po’ più di spazio di manovra… ma ci è voluta un’ora solo per aspettare che lo svitol facesse effetto su un bullone incastrato. E tutta una serie di parolacce per far stare dritta la ruota.

Alla fine sono riuscito a montare tutto ma, esausto, non ho collegato anche i fili; lo vedremo nella prossima puntata, se tutto questo sbattimento è servito a qualcosa, o se lo scooter è da buttare. (aggiornamento 10 febbraio 2018: funziona ancora!)

Nel frattempo mi sto informando sulle auto ibride o “super-elettriche” (cioè con più di 400 km di autonomia) in arrivo, ma partono tutte da prezzi proibitivi di 40.000 euro!

Oppure 10.000 per una “vecchia” Leaf da 150 km di autonomia o una C-zero da 100.

Oppure 5.000-10.000 ipotetici euro per retrofittare una vecchia auto e trasformarla in elettrica da 50-100km.

Certo, se rimettessero gli incentivi e fossero applicabili anche alle elettriche usate….

 

Collegamento di un CellLog8S/8m ad Arduino o a ESP8266

Posted in auto elettriche, batterie, hardware, scooter elettrici by jumpjack on 2 gennaio 2017

L’utente pa.hioficr sul forum https://endless-sphere.com/forums/viewtopic.php?f=14&t=20142 ha scoperto che è possibile leggere in tempo reale i dati di log di un CellLog (sia 8S con memoria che 8S senza memoria) semplicemente “agganciandosi” al pin TX dell’Atmel montato sul CellLog.

Questo significa che invece di spendere 40-50 euro per comprare un CellLog8S con memoria e infilarlo nel sottosella per poi aspettare di arrivare a casa per scaricare i dati letti, è in linea di principio possibile collegare al CellLog8M da 15 euro un ESP8266 da 8 euro che tramite Wifi invia dati a uno smartphone che li mostra in tempo reale sullo schermo durante la marcia; probabilmente è anche possibile scrivere un SW che legge i dati da più di un celllog contemporaneamente, sfruttando l’emulatore di porte seriali.

Questo è lo schema elettrico originale dell’autore:

celllog-000

 

Questa è una sua successiva modifica per implementare anche avvio del logging e reset del CellLog:

celllog-001

Di seguito la spiegazione del funzionamento che ho dedotto io dallo schema, inserita anche nella seconda edizione del mio libro “Guida alla costruzione di una batteria al litio per mezzi elettrici”, di imminente pubblicazione:

 

8.1.2. Materiale occorrente
Q1 = 2n3906 o altro PNP
R1 = R4 = R6 = R7 = 220 ohm
R2 = R5 = 330 ohm
R3 = 4700 ohm
U1 = U2 = optocoupler/fotoaccoppiatore a 2 canali, 5V, 8 pin, uscita a fototransistor di tipo NPN (es. Vishay ILD615, Fairchild MCT61, Isocom ISP827,… )
8.1.3. Spiegazione del funzionamento
Il circuito può essere suddiviso in 4 parti: le prime due ricevono dati dal CellLog tramite il primo fotoaccoppiatore e li inviano al microcontrollore esterno; le altre due ricevono invece dati dal microcontrollore e li inviano al CellLog tramite il secondo fotoaccoppiatore.
8.1.3.1. Rilevamento accensione
In Figura 127 è riportata la parte dedicata al rilevamento dell’accensione; notare che nella figura il transistor è stato capovolto rispetto allo schema originale reperito su internet, per renderlo coerente con la notazione standard di avere la corrente che scorre dall’alto verso il basso; inoltre lo schema è stato semplificato e ripulito, per facilitarne la comprensione, lasciando però inalterati i collegamenti e i componenti.
Il microcontrollore (MCU) è programmato per leggere sul pin MCU_CL8.1_DETECT lo stato del CellLog: quando il pin è “basso” (0V), vuol dire che il CellLog è acceso; normalmente questo pin è invece a 5V perché connesso all’alimentazione dell’MCU tramite R5 (che serve a limitare a 15mA la corrente Collettore-Emettitore quando il transistor è in conduzione); quando però il CellLog viene acceso, i suoi 5V arrivano, tramite la resistenza R4 (che limita la corrente a 23 mA) sul pin 4, e mettono in conduzione il fotodiodo 3-4, che mette a sua volta in conduzione il fototransistor 5-6, che mette a massa il pin MCU_CL8.1_DETECT.
celllog-002
Figura 127 – Rilevamento accensione
8.1.3.2. Lettura dati
Dobbiamo far “riflettere” sul piedino RX del microcontrollore esterno lo stato del pin TX del CellLog, tramite il fotoaccoppiatore; per farlo, usiamo il pin TX del CellLog per controllare la base di un transistor collegato all’ingresso del fotoaccoppiatore; il transistor serve a far sì che basti prelevare dal CellLog una piccolissima corrente (1 mA grazie a R3 da 4300 ohm) per attivare il fotodiodo, che richiede invece alcune decine di mA; in pratica è un transistor di disaccoppiamento, che cioè rende indipendenti gli assorbimenti di corrente di CellLog e fotoaccoppiatore.
celllog-003
Figura 128 – Circuito TX-RX con transistor PNP o NPN
Il progettista ha scelto di usare un transistor di tipo PNP, che viene acceso da una tensione di base negativa rispetto all’emettitore; l’emettitore va quindi collegato stabilmente alla tensione di alimentazione 5V, in modo che il transistor entri in conduzione quando TX va a 0V. Quando questo accade, succederà quanto segue, in sequenza:
1. Q1 si accenderà
2. Passerà una corrente nel fotodiodo 1-2
3. Si accenderà il fototransistor 7-8
Dobbiamo ora fare in modo che tutto ciò risulti in una tensione di 0V sul piedino RX del microcontrollore esterno, corrispondente al piedino 8 del primo fotoaccoppiatore, che è il collettore del fototransistor di uscita; per farlo, dobbiamo fare in modo che il piedino 8 si trovi normalmente a 5V, e venga portato a 0V solo quando si accende il fototransistor 7-8; bisogna quindi tenere il pin 8 costantemente collegato ai 5V del microcontrollore esterno, e il pin 7 alla sua massa; in questo modo, l’accensione del fototransistor 7-8, che avviene quando TX del CellLog va a 0, collegherà il pin 8 a massa tramite il 7, cioè metterà RX del microcontrollore esrerno a 0, riflettendo così esattamente lo stato del pin TX del CellLog.
Se non dovessimo avere disponibile un transistor PNP ma solo un NPN, occorrerà invertire la logica del circuito.
8.1.3.3. Reset
Il “cervello” del CellLog, un microcontrollore ATMEL, è dotato di un piedino di reset, che possiamo controllare tramite il nostro microcontrollore esterno; per farlo, al pin di reset colleghiamo il collettore del fototransistor 5-6 del secondo fotoaccoppiatore (pin 5); controlliamo questo fototransistor tramite il rispettivo fotodiodo 3-4, collegato al pin MCU_CL8.1_RESET del nostro microcontrollore esterno; basterà quindi mettere alto questo pin per mettere in conduzione il fotodiodo e il fototransistor e quindi resettare il CellLog.
celllog-005
8.1.3.4. Avvio log
Per far partire il logging è necessario premere per 3 secondi il pulsante 2 del CellLog (SW2); possiamo farlo fare al nostro microcontrollore esterno collegando l’interruttore in parallelo a un’uscita del secondo fotoaccoppiatore: quando sull’ingresso ci sarà una tensione di 5V (impostata via software), il fototransistor di uscita entrerà in conduzione chiudendo l’interruttore e avviando così il logging.

celllog-004