Jumping Jack Flash weblog

Diario elettrico Greengo/Zhidou Icaro – 23 agosto 2019: in riserva

Posted in auto elettriche, minicar elettriche by jumpjack on 23 agosto 2019

Ormai vado in giro con questa macchinina da più di un anno, ma ancora non mi era mai capitato di rimanere a secco; però sono un po’ di giorni che vado a lavoro senza ricaricarla, per vedere se per caso non ricaricandola più al 100% si risolve il problema del depotenziamento alla partenza (potrebbe dipendere dalla batteria troppo carica appena finita la ricarica).

Solo che ieri avrei proprio dovuto ricaricarla, perchè stamattina segnava 40% di autonomia rimasta (=40km) e per andare/tornare da lavoro ne devo fare 20; e gli ultimi 20 sono segnati in rosso sull’ “indovinometro”, cioè sarebbero la riserva.

Quindi? Che faccio, parcheggio e prendo l’auto a benzina? No, vabbè, dai, siamo qui per sperimentare, no? Vado.

Primo esperimento: vado al Centro Elettrico Terradura, unica colonnina di ricarica disponibile nel raggio di 10km e lungo la strada per andare a lavoro.

Spiacente, “oggi” non funziona.

Perfetto, e ho anche sprecato 3 o 4 preziosi km per andarci.

E vabbè, andiamo in ufficio. Arrivo con 30%/30km residui; al ritorno entrerò sicuramente in riserva.

Secondo esperimento: vediamo un po’ come funziona il servizio di “ricarica di emergenza per auto elettriche” di E-Gap, attivo da quest’anno.

Le tariffe:

Una vera follia: dai 300 ai 400 centesimi per kWh, a fronte dei 45 alle colonnine pubbliche, i 17 della ricarica domestica diurna e i 7 della ricarica domestica notturna.

Ma c’è di peggio. Dov’è attivo il servizio di ricarica a Roma? Nella zona in cui la colonnina più lontana è a 500 metri, forse 1 km: il centro storico!

Ok, visto che la cosa peggiore che può succedermi è che l’auto entri in modalità lumaca a 1 km da casa, non ci penso proprio a buttare 20 euro per l’esperimento.

Terzo esperimento: andare in riserva

Poco dopo essere partito dall’uffucio, a pochi chilometri da casa, ecco che la lancetta va sul rosso.

Cosa succede?

Niente di niente: la macchina va esattamente come prima, velocità massima 65km/h di tachimetro, assorbimento fino a 250A in partenza.

Percorro altri 2 km… 3… 4… Ne restano ormai 15. Non succede niente; nessuna spia. Ok, ormai sono a 500m da casa, iniziamo con la sperimentazione “pesante”, cioè quella con prospettiva di tornare a casa a piedi (poi come farò a ricaricare la macchina, non lo so; ci penserò… 🙂 ). Inizio a gironzolare intorno casa per salite e discese. 14%… 13%… 12%.. 11%… 10%… ZAC! Potenza improvvisamente segata! Quando affondo l’acceleratore, l’auto rallenta invece di accelerare.

Corrente di picco massima ammessa: circa 50 Ampere.

Corrente continua: 7 Ampere! Cioè 500W al motore.

Velocità massima consentita: 20 km/h.

Nessuna indicazione luminosa o sonora, nè sul cruscotto, nè sul tablet.

Per l’appunto ero in cima a una salita dietro casa, quindi è bastato scendere “in folle” per tornare a casa.

Fine del test.

Risultati del test:

  • L’autonomia disponibile della Greengo/Zhidou Icaro A1 da 6 kW è 90%/90km percorribili con prestazioni standard; gli ultimi 10%/10km si fanno invece a 20 km/h e con 0.5 kW di potenza massima.
  • Nessun preavviso visivo o sonoro di entrata in riserva (sulle D1, almeno quelle in versione Sharing, c’è invece un avviso quando si arriva al 20%).
  • Costo ricarica di emergenza E-Gap: 15-20 euro.
  • Attesa: da 1.5 ore a 24 ore secondo il prezzo pagato (da 300 a 400 centesimi a kWh).

Come risolvere il problema del restare a piedi senza ricorrere a costosissime ricariche di emergenza E-Gap?

Ci vorebbe l’equivalente di una “tanica di corrente”, da poter rapidamente ricaricare con 1-2 kWh raggiungendo a piedi una colonnina.

Tecnicamente, si tratterebbe di mettere insieme un inverter a 220V e una batteria; ma l’inverter dovrebbe essere da 3 kW (grosso quanto una 24ore e del costo, forse, di un migliaio di euro; non so il peso), e una batteria al litio da 1 kWh oggi come oggi peserebbe circa 5 kg e costerebbe 4 o 500 euro.

O sennò basterebbe una batteria da 1 kWh, ma da 72V, collegabile direttamente alla Icaro in caso di emergenza; ma su un’auto vera una batteria per connessione diretta dovrebbe essere da 300 o 400V!

La Icaro consuma 0.100 kWh/km, che probilmente diventano 0.050 in modalità lumaca; un’auto consuma in media 0.150 kWh/km, che forse si riducono a 0.100 a bassissima velocità.

Diario elettrico Greengo/Zhidou Icaro: 2 agoto 2019 – problemi al motore

Ieri mattina, nuovo tipo di problema, questa volta riguardante il motore: all’improvviso, durante la marcia a bassa velocità, l’auto ha iniziato ad accelerare a singhiozzo, nonostante il pedale dell’acceleratore fosse fermo, e l’ago del tachimetro ha iniziato ad andare su e giù a vanvera; mi sono fermato, ho spento e riacceso, e tutto ok, ma la cosa è un po’ preoccupante, perchè sembra decisamente un problema di lettura dei sensori di hall, quei 3 sensori che permettono al motorcontroller di sapere in ogni istante a che velocità e in che direzione si sta muovendo il motore; il che vuol dire che se le letture sono a vanvera, la centralina potrebbe “ingranare la retromarcia” in qualunque momento…

Stamattina ho dato una controllata a fili, cavi e cavetti, ma non mi sembra ci sia nessun falso contatto; però il problema si è ripresentato un paio di volte, e una volta anche quando ero in velocità. Mettendo un momento in folle su “N” e poi di nuovo in drive su “D” il problema sembra risolversi, ma il differenziale non è molto contento di queste accelerazioni/decelerazioni improvvise, quindi questo sembrerebbe proprio essere un motivo in più per disattivare la famigerata rigenerazione in frenata, che secondo la Kelly, che fabbrica il motorcontroller, potrebbe essere la causa degli improvvisi, salturari depotenziamenti.

L’alernativa sarebbe forse cambiare il cavo che contiene i fili del sensore di hall, che magari si è deteriorato; ma il cavo costa 30 euro e la spedizione dalla Cina 35 euro….

Vedremo.

——————

A proposito del problema del depotenziamento, sono arrivato per ora a  questa conclusione:

il depotenziamento ha due possibili cause: il BMS, e il motorcontroller;

  1.  pare che il BMS sia tarato per tagliare la potenza se legge una differenza di tensione superiore a un tot tra cella più alta e cella più bassa; in origine sono 300 V, ma pare che nelle versioni successive di auto e/o BMS abbiano modificato o tolto questo limite, come è stato fatto sulla mia Icaro. Sulla quale però ogni tanto, anche se più raramente, il problema si ripresenta. E quindi entra in gioco una seconda possibile causa.
  2. anche il motorcontroller è tarato per tagliare la potenza in base alla tensione, ma di tutta la batteria: succede sia in accelerazione, se la tensione scende troppo, che in frenata rigenerativa, se la tensione sale troppo.

Abbassamenti eccessivi non ne ho mai rilevati in accelerazione, nonostante i 250A tirati fuori al posto dei 150A di origine (a seguito di una mia rimappatura della centralina), ma in compenso a volte mi è capitato di trovare la batteria a 81V la mattina, appena caricata, e a volte addirittura a 85V se si era appena spento il caricabatterie; trattandosi di 24 celle, significa 3.375V  e 3,54V per cella; se in questa situazione esco dal parcheggio, che ha una rampa in discesa, la tensione probabilmente sale ulteriormente (non ho un logger, devo vedere tutto a occhio), e la centralina va in protezione. Nella schermata 2 del SW di configurazione si possono impostare le soglie di intervento del regen (voce 5, nota 4)

La spiegazione dice:

  • Under voltage [3]: Controller will cut back current at battery voltage lower than 1.1x he value, cut out at the vale, and resume operation at 1.05x value
  • Over voltage [4]: Controller will cut back regen current at 0.95x the value, cut out regen if voltage reachd the setting, and resume regen at 0.95x value.

Traduzioni:

  • Sottotensione [3]: il controller ridurrà la corrente quando la tensione di batteria scenderà sotto 1.1 volte il valore impostato, la taglierà completamente quando raggiungerà esattamente il valore impostato, e la ripristinerà solo quando la tensione risalirà ad almeno 1.05 volte il valore impostato.
  • Sovratensione [4]: Il controller ridurrà la rigenerazione quando la tensione raggiungerà il 95% del valore impostato, lo azzererà al raggiungimento del valore esatto, e ripristinerà al ragiungimento  del 95%.

In questo caso ci interessa il punto 2 (sovratensione), l’altro riguarda la corrente esratta dalla batteria in accelerazione.

La Icaro monta 24 celle LiFePO4; in genere le LiFePO4 (ma ce ne sono tante varianti) hanno tensione massima di 3.33V e tensione di ricarica finale di 3.65V; a livello di batteria quste tensioni equivalgono a 80V e 87,6V. La tensione di ricarica finale permane però solo finchè resta collegato il caricabatteria; quando si stacca, la tensione decade spontaneamente a 3.33V/80V.

Il 95% di questi due valori massimi è:

  • 80.0 * 0.95 = 76 V
  • 87.6 * 0.95 = 83.2 V

Non ho invece modo di sapere quali sono i valori di intervento del BMS, quindi devo supporre che il BMS non effettui nessun intervento, ed agire quindi solo sul motorcontroller, assicurandomi che riduca la tensione di regen quando la tensione supera i 76V, e lo tagli completamente se supera gli 80V.

Purtroppo non ricordo a quanto impostai questa soglia l’anno scorso, però so che sia in ufficio che a casa l’uscita dal parcheggio (occasione in cui spesso si verifica il depoteniamento automatico) c’è una rampa in discesa; se a casa sicuramente parto con la batteria a 80V (a volte anche 81V), in ufficio, dopo 10 km di viaggio, mi pare difficile partire con questa tensione, ma la verità è che non ho mai controllato, mi sono sempre limitato a controllare che la tensione di cella non SCENDESSE sotto livelli critici, non ho mai pensato a verificare che non salisse troppo.

Dovrò quindi risistemare un po’ i parametri della centralina: o disattivo completamente il regen – cosa che renderebbe solo fastidioso, anzichè pericoloso, il problema dei sensori di hall –  oppure cambio la soglia di intervento in modo che la tensione di batteria non superi mai gli 80V a causa del regen.

 

 

Hacking Icaro – Centralina GSM: Man in the Middle Attack – puntata 2

Posted in auto elettriche, hacking, hardware by jumpjack on 11 luglio 2019

Una settimana di studi e teorie non sono valsi l’avere i pezzi tra le mani…

A quanto pare il passo dei due connettori non è di 2mm, ma di 1.27mm! Vale a dire 0.050″.

Quindi sia la striscia di cavi che le pin strip… sono completamente inutili, tocca ricominciare la ricerca da capo.

Per fortuna però ormai ho acquisito un po’ di esperienza nel decodificare i datasheet di questi cavi, e ci è voluto poco: quello che mi serve non è un cavo TCMD o TCSD (passo 2.0mm) , ma un cavo di una famiglia diversa: o FFMD o FFSD  (passo 1.27mm). Si tratta sempre di cavi IDC di tipo TigerEye, ma i pin hanno appunto passo 0.050″/1.27mm. “M” sta per “maschio” e “S” per socket, cioè femmina, poi per il resto la nomenclatura Samtec rimane la stessa, quindi un FFxD-25-D avrà due connettori uguali mentre un FFxD-25-T li avrà di sesso opposto; purtroppo da 2×22 pin non esistono, quindi devo prendere il numero subito superiore, 2×25. Altre famiglie sono FFTP e FMTP, che però hanno i cavi “twistati” a 2 a 2; non significa che i contatti siano “incrociati”, ma solo che i fili sono arrotolati l’uno sull’altro (credo per attenuare le interferenze elettomagnetiche), ma poi terminano da entrambi i lati nella stessa posizione.

Le sigle papabili sono quindi:

  • FFMD-25-T-xx.xx-01: maschio/femmina
  • FFMD-25-D-xx.xx-01: doppio maschio
  • FFSD-25-T-xx.xx-01: maschio/femmina
  • FFSD-25-D-xx.xx-01: doppia femmina

Twisted:

  • FFTP-25-T-xx.xx-01: twisted, maschio/femmina
  • FFTP-25-D-xx.xx-01: twisted,  doppia femmina
  • FMTP-25-T-xx.xx-01: twisted, maschio/femmina
  • FMTP-25-D-xx.xx-01: twisted, doppio maschio

Può darsi che alcune delle combinazioni maschio/femmina non esistano perchè coincidenti con altre sigle.

Purtroppo su https://www.toby.co.uk  un FFMD-25-T-08.00-01-N costa circa 32,00 sterline fra tasse e spedizione.

Su RS-components non ci sono cavi maschio/femmina in magazzino, ma ho visto che la strip-pin con passo 2.0mm che ho ordinato per sbaglio entrano senza sforzo nè gioco nel connettore-femmina della scheda GSM, quindi basterà sfilarne 22 uno per uno e infilarli in uno dei due connettori-femmina per ottenere un connettore maschio; il femmina/femmina più economico è un FFSD-25-D-04.00-01-N, cioè 2×25 pin lungo 4 pollici (10 cm) del costo di 13,54 euro, che con IVA e spedizione diventano 22,62€; prenderò questo e speriamo che stavolta i conti tornino.

 

connettore GSM nero con righello e pin

Tagged with: , ,

E-Prix Formula E – Roma EUR – Sabato 13 Aprile 2019

Posted in auto elettriche by jumpjack on 27 febbraio 2019

Seconda edizione della “formula 1 elettrica” di Roma, quartiere EUR.

Qui di seguito la mappa delle tribune e le foto delle stesse, relative all’edizione scorsa, del 2018.

Ad oggi la FIA non ha ancora risposto in merito ai dubbi espressi sul fatto che anche quest’anno, stando alla mappa ufficiale, la tribuna d’onore non vedrà la pole position ma solo la coda della griglia di partenza; forse chi ha comprato il biglietto della tribuna 1, il più costoso, è ancora in tempo per avere un rimborso, o per sollecitare un cambio del circuito, o della tribuna, o della griglia di partenza, o di qualcosa!

Mappa circuito 2018:

 

Veduta aerea di tribuna 1 e partenza:

Mappa ufficiale 2019:

Dimensionamento aria condizionata

Posted in ambiente, auto elettriche by jumpjack on 27 gennaio 2019

Qualche appunto su come calcolare la potenza che deve avere un impianto di aria condizionata per veicoli.

Optimization of Vehicle Air Conditioning Systems Using Transient Air Conditioning Performance Analysis – Terry J. Hendricks – National Renewable Energy Laboratory – 2001

Nello studio ipotizzano un irradiazione solare (“cabin external solar load “) di 1600W. Ma si tratta di un autoveicolo a 4-5 posti; per la icaro forse bisognerebbe considerare 1000W, cioè un po’ più della metà, “per stare sicuri”.

Quest’altra ricerca indica circa 1300W solari assorbiti dall’abitacolo, nello screenshot a p.35:

Vehicle Transient Air Conditioning Analysis: Model Development & System Optimization Investigations -Terry J. Hendricks – 2001 – NREL

Le ricercche dicono anche che in un’auto parcheggiata al sole l’aria può raggiungere una temperatura di 75°C-80°C.
Dalla temperatura dell’aria dipende la sua entalpia, cioè la quantità di energia che possiede per unità di massa.

Considerando un umidità del 50% risulta:

  • 25°C: 50 kJ/kg
  • 35°C: 80 kJ/kg
  • 80°C: 583 kJ/kg

Ipotizzo che l’abitacolo della Icaro abbia un volume di 0.5 m3, che per una densità di 1.225 kg/m3 significa 0,61 kg.
Questo significa che alle varie temperature l’aria dell’abitacolo contiene queste quantità di energia (arrotondate), espresse in Wh invece che Joule:

  • 25°C: 9 Wh
  • 35°C: 14 Wh
  • 80°C: 100 Wh

Quindi per passare da 80°C a 25°C bisogna rimuovere 91 Wh; per farlo in un’ora servirebbero 91W, per farlo in un minuto servirebbero 91*60=5460W… oppure si può evitare a monte di raggiungere gli 80°C, scambiando costantemente aria con l’esterno: per passare da 35°C a 25°C in un minuto, infatti, basterebbero (14-9)*60=300W.

Se l’abitacolo è da 0.5m3 e si installa una ventola da 50 m3/h, in teoria tale ventola riesce a “svuotare” l’abitacolo 100 volte in un’ora; anche supponendo che abbia metà dell’efficienza di targa (25 m3/h), significa comunque cambiare completamente l’aria dell’abitacolo 50 volte in un’ora.

Probabilmente, però, la cosa funzionerebbe davvero bene solo se la presa d’aria fosse vicino al tettuccio, piuttosto che vicino ai piedi, perchè è lì che si accumula il calore, sia perchè sale verso l’alto, sia perchè “subito dietro” c’è il sole che batte.

Forse la cosa migliore da fare sarebbe allora attaccare al finestrino una ventola aspirante trasversale tipo questa:

Con soli 3.6W riesce a spostare addirittura 187 m3/h. Però è un po’ grande (240mm*70mm*70mm), quindi forse si può anche optare per una versione più compatta – PMB1275PNB2-AY Ventilatore: DC; blower; 12VDC; 75x75x30mm; 20,91m3/h; 40,5dBA:

 

Evitare che l’aria raggiunga gli 80°C, o rimuoverla 1-2 ore prima di andare a prendere l’auto al parcheggio sostituendola con quella estenrna a 35°C, permetterebbe quindi di avere un abitacolo già “vivibile” da subito, e di abbassare la temperatura a livelli confortevoli (25°C) in meno tempo e/o usando meno potenza, quindi scaricando meno la batteria.

Un ulteriore contributo al comfort potrebbe sicuramente essere fornito dal raffrescamento del sedile, visto che stare in un abitacolo freddo ma seduti su un sedile a 80°C è comunque estremamente sgradevole.

Raffrescatori di sedili ne esistono di diversi tipi; normalmente usano l’aria ambientale così com’è, ma se si inviasse invece alla ventola aria pre-raffreddata, e accendendo anche la ventola del coprisedile prima di entrare in auto, permetterebbe di trovare all’arrivo non solo un abitacolo a temperatura decente, ma anche un sedile fresco.

Per raffrescare l’aria del sedile potrebbe bastare un piccolo raffreddatore a celle di peltier tipo questo, della potenza di 120W:

Le ventole in basso estraggono il calore, quella piccola in alto soffia aria gelida (può arrivare, a regime, a 0°C!) dalla cella di peltier. Quelle in basso ono ventole speciali ad alta dissipazione, che non si limitano a soffiare aria sulle lamelle, ma fanno anche circolare liquido nei tubi che vanno a una piastra che va attaccata al processore… o nel nostro caso alla cella di peltier:

 

Quei “tubi” di rame si chiamano “heatpipe”, e non richiedono una pompa per funzionare; all’interno contengono una piccola quantità di acqua distillata, o altro liquido, che a contatto con la parte calda evapora (assorbendo calore) e “invade” l’intero condotto; il vapore che viene a trovarsi dalla parte di heatpipe a contatto col dissipatore si raffredda (cedendo all’ambiente il calore estratto dall’oggetto da raffreddare) e si ricondensa in acqua, lasciando spazio ad altro vapore che viene attirato in quella zona dalla zona calda; l’acqua di condensa, invece, viene ritrasferita alla parte calda da un materiale poroso che riveste il tubo, per effetto di capillarità; una volta tornata nella zona calda, evapora di nuovo, e così via.

Dal momento che il sistema funziona per pressione e per capillarità, è indipendente dall’orientamento, cioè non è necessario che la parte da raffreddare sia in basso affinchè il calore vada in alto: il vapore invade infatti automaticamente l’intero volume, in qualunque posizione sia orientato l’heatpipe, e la capillarità funziona in qualunque direzione.

 

 


Altra ricerca utile:

Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method – Mohammad Ali Fayazbakhsh and Majid Bahrami – Simon Fraser University – 2013

 

 

Appunti su aria condizionata termoelettrica per veicoli (TE-HVAC o TEAC)

Posted in auto elettriche, hardware by jumpjack on 30 dicembre 2018

Thermo-Electric Heating, Ventilation and Air Conditioning

  1. Experimental validation of the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) – Alaa Attar, HoSung Lee, Sean Weera
  2. “Vehicular Thermoelectric Applications Session – DEER 2009” – John W Fairbanks – Department of Energy – Vehicle Technologies – Washington, D.C. – August 5, 2009: “total cooling power required to cool the zone of a single occupant is around 630 W while 3.5 to 4.5 kW is needed to cool the entire cabin”
  3. Modeling a Thermoelectric HVAC System for Automobiles,” Journal of Electronic Materials, vol. 38, no. 7, pp. 1093-1097, 2009: “For ambient temperatures of 25°C and 30°C, the conventional auto HVAC system has cooling capacity of five times higher than the thermoelectric HVAC system at the same input power”
  4. Design and Analysis of a Thermoelectric HVAC System for Passenger Vehicles” SAE International, Vols. 2010-01-0807, 2010.”, D. C. D. a. L. J. Wang – Esperimento con 6 celle peltier da 48W l’una (tot 288W): temperatura dell’abitacolo abbassata a 7°C!
  5. Thermoelectric Air Cooling For Cars” – Manoj S. Raut, Dr.P. V. Walke  (grande quantità di dati numerici e formule)

Dalla ricerca 5:

  • Calore specifico aria a 30°C: 1007 J/KgK
  • Densità aria: 1.164 kg/m3
  • Volume abitacolo: 1m3 –> 1.164 kg
  • Temperatura interna: 23°C
  • Temperatura esterna: 30°C
  • Differenza temperatura: 7°C

Per abbassare di 7°C la temperatura dell’aria che esce da un “raffreddatore termoelettrico” di 0.0054128 cm2 di diametro alla velocità di 5 m/s (=0.027064 m3/s = 97 m3/h) servono 222W di “potenza raffreddante” (Qc):

P = m * C * DeltaT

  • m= massa d’aria per secondo = rho * volume/secondo = 1.164 * 0.0270640.031502496 [kg/s]
  • C = calore specifico aria
  • DeltaT = Differenza di temperatura ingresso/uscita

P = 0.031502496 * 1007 * 7 = 222 W

L’autore usa 6 celle di peltier “TEC1-12704” in “disposizione mista serie/parallelo”, ognuna con potenza raffreddante minima di 36W alimentata a  15.4V/4.1A/63.14W (quindi 1:1.75 circa), ma a 12V assorbe invece 3.2A/38.4W

 

Questi i grafici presi da alcune schede tecniche:

Schede tecniche:

 

 

 

 

Diario elettrico GreenGo Icaro – 22/12/2018: il clacson

Posted in auto elettriche, minicar elettriche by jumpjack on 22 dicembre 2018

Dopo quasi un anno di utilizzo mi sono reso conto di un'(altra) cosa fastidiosa della icaro, oltre ai pulsanti delle marce attaccati al volume della radio e ai comandi dei finestrini vicini al pulsante di emergenza di spegnimento totale: il clacson.
Per qualche motivo i progettisti hanno deciso di mettere il pulsante del clacson sullo sterzo… ma invece che un unico pulsante al centro, ne hanno messi due sui raggi dello sterzo! Il che vuol dire che quando devo suonare il clacson devo prima andare a cercare i pulsanti in una posizione diversa a seconda di come è girato lo sterzo!
Assurdo.

Fortunatamente, il blocco di plastica che contiene i due pulsanti viene via facilmente, essendo semplicemente a incastro; è bastato quindi scollegare i due pulsanti, fare un bel buco tondo nel mezzo, infilarci un VERO pulsante di clacson (11 euro) e collegare i fili, et voila, un altro problema risolto; si tratta di un lavoro di una mezz’oretta; per fare il buco ho usato un dremel, perchè la plastica è molto spessa e fare un buco tondo pulito con un taglierino è praticamente impossibile.

Unico inconveniente incontrato: per fissare meglio il pulsante allo sterzo, non essendo ovviamente il buco venuto preciso al mm, ho usato un po’ di colla a caldo, che però ho inavvertitamente messo anche sulle guide del pulsante… che quindi si è cementato allo sterzo! :D Quindi ho dovuto rimuovere la colla in eccesso, ed è andato tutto a posto.

Foto del lavoro finito:

20190102_155320.jpg

Notare che ho lasciato i fili dei due pulsanti originali, in caso ci fossero problemi e dovessi rimettere tutto come prima, ma dopo un mese non ho riscontrato nessun problema.

Il lavoro ultimato:

20181227_110317.jpg

All’interno dello sterzo ci sarebbe teoricamente spazio per altri 4 o 5 comandi, ma purtroppo non sono cablati, e l’unico modo per cablarli è smontare completamente lo sterzo.

20181227_110338.jpg

Peccato, perchè avevo pensato di mettere dei riscaldatori per l’inverno… ma di smontare lo sterzo non mi va, troppi rischi annessi, quindi niente.

 


Degli altri due problemi citati all’inizio, uno l’ho già risolto tempo fa, spostando i controlli dei finestrini negli sportelli (cosa tutt’altro che facile, non essendoci spazio per passare nuovi fili); mi resta da separare comandi della radio e delle marce, ma questo è molto più complicato perchè dietro quei due “semplici pulsantini” c’è un complicato circuito elettronico e due cavi con 8 contatti in tutto. Non so a cosa serva tutta questa roba… ma dovrò capirlo, se voglio riuscire a spostare i pulsanti; avevo pensato di collegarli a quelli dei finestrini, rimasti al centro dell’auto vicino al suddetto pulsantone di emergenza, dove avrebbero più ragione di stare… trattandosi della posizione abituale del cambio di una macchina! Però resta il problema dell’ “interferenza” col pulsante; quindi starei pensando di installare invece semplicemente una leva del cambio al posto dei due pulsanti, magari tipo questa, a 4 posizioni (i pulsanti sono 3: Marcia, Retromarcia e Folle), però deve essere di dimensioni ragionevoli.

Vedremo.

Tagged with: , ,

BMS con intercomunicazione a infrarossi

Posted in auto elettriche, batterie, scooter elettrici by jumpjack on 12 settembre 2018

La Lion Smart ha avuto un’idea geniale: il BMS a infrarossi! (o forse esisteva già, ma io l’ho scoperto adesso)

Quest’idea comporta l’enorme vantaggio di non dover più costruire batterie come questa!

 

Cioè niente più fili di segnale che svolazzano dappertutto, ma solo massicci collegamenti di potenza.

Questo comporterà probabilmente anche una grossa riduzione dei prezzi di fabbricazione delle batterie, rendendo il processo molto più automatizzabile: basta infatti un braccio robotico che infila nel contenitore/batteria tanti moduli quanti ne servono per raggiungere l’amperaggio e la  tensione desiderati, e la batteria è pronta. Molto meglio di dover saldare 200 fili con precisione millimetrica.

Considerando che nella batteria di un’auto possono esserci anche 100-150 celle in serie (sulle auto le batterie sono da 300 o 400V e ogni singola cella è da 3 o 4 V), e che ognuna deve essere collegata al BMS per poter essere bilanciata, e considerando per ognuna un filo di lungezza media di 1 metro per collegarla al BMS, parliamo di quasi 200 metri di filo in meno.

E nessun problema di interferenza nelle trasmissioni tra celle, essendo chiuse in una scatola buia e non essendo una trasmissione nè WiFi nè Bluetooth.

Chissà se una tecnologia del genere potrà mai arrivare nei BMS amatoriali a cifre ragionevoli (ne dubito, visto che un BMS “discreto”, cioè con un circuito per ogni cella, costa 400 euro invece che 100).

 

Una batteria Lion Smart a infrarossi è stata installata per prova su una BMW i3 (link a inizio articolo).

 

 

Tagged with: , , , ,

Auto elettriche e riscaldamento globale

Posted in auto elettriche, fotovoltaico by jumpjack on 7 settembre 2018

Il 100% dell’energia estratta dalle batterie di un’auto elettrica finisce per diventare, sempre e comunque riscaldamento globale dell’atmosfera:

  • il calore disperso dai freni riscalda l’aria;
  • il calore prodotto dalle ruote che toccano la strada scalda l’asfalto che a sua volta scalda l’aria;
  • il movimento stesso dell’auto nell’atmosfera scalda l’aria aumentandone l’agitazione delle molecole.

Quindi è bene che l’energia delle batterie venga dal sole, perchè se viene dai combustibili fossili è come se viaggiasse nel tempo da 1 miliardo di anni fa ad oggi: sempre di energia solare si tratta, ma accumulata 1 miliardo di anni fa da piante e animali che poi sono diventati petrolio.

Penso che sia come se oggi risplendessero migliaia soli invece che uno solo; cioè, se per formare 1 litro di benzina ci sono volute, che so, 10 tonnellate di piante marcite, putrefatte e diventate petrolio, che erano cresciute in 6 mesi, e poi bruciamo questo litro in 1 giorno , vuol dire che è come se in quel giorno risplendesse l’equivalente di 6 mesi di sole, o che risplendesse un sole 180 volte più intenso.

 

Ma proviamo ora a fare un calcolo un po’ spericolato:

1)il mix energetico italiano ha raggiunto il 40% di rinnovabili e 60% di fossili;
2) una centrale a combustibili fossili ha efficienza del 50% invece che 25% come un’auto;
3) con un litro di benzina (10 kWh) un’auto a benzina fa 15km, un’elettrica fa 70km.

Dovrebbe significare:
1) 0.6 * 6 = 3.6 mesi di sole invece che 6
2) 0.5 * 3.6 = 1.8 mesi di sole invece che 3.6
3) 15/70 * 1.8 = 0.38 mesi di sole invece che 6, cioè 1/16

Cioè, se ho fatto bene i conti, vorrebbe dire che un’auto elettrica riscalda il pianeta 16 volte meno di un’auto a benzina.
Sarà vero? Sono calcoli decisamente strampalati… 🙂

Raduno Elettrico Romano – sabato 22 settembre 2018 – 16:00-20:00

Posted in auto elettriche, minicar elettriche, scooter elettrici by jumpjack on 3 settembre 2018

Pagina ufficiale:

https://autoguida.wordpress.com/2018/09/03/raduno-elettrico-romano-sabato-22-settembre-2018-1600-2000/

NOTA: E’ necessario iscriversi tramite apposito modulo di iscrizione per permettere al Comune di organizzare preventivamente gli spazi.